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This paper concernsthe description of transientand highly nonlinear, near-breaking,
surface water waves that are characterized by a spread of wave energy in both fre-
guency and direction. A new spectral wave model is described that allows both the
unsteadiness and the directionality of a wave field to be described in a fully nonlinear
sense. The methodology underlying the scheme is similar to the unidirectional model
developed previously by Craig and Sulem [13]. An approximation of the Dirichlet—
Neumann operator is made that transforms the boundary values of the velocity poten-
tial, ¢, at the water surface into valuesgf This allows an initial spatial representa-
tion of the water surface elevation and the velocity potential on this surface to be time
marched using fast Fourier transforms. The advantages of this technique lie in both
its efficiency and its robustness. These are of fundamental importance when seeking
to model extreme ocean waves, involving broad-banded frequency spectra and re-
alistic directional spreads, since they incorporate a large range of horizontal length
scales. Inits present form, the model is appropriate to waves propagating on water of
constantdepth;itrunsonaPC andis sufficiently stable to predict the evolution of near-
breaking waves. Indeed, the only significant restriction arises due to the Fourier series
representation. This requires the water surface elevation to be a single-valued func-
tion of the horizontal coordinates and therefore limits the model to non-overturning
waves. The new numerical scheme is validated against a fifth-order Stokes solution
for regular waves and the recent experimental observations provided by Johannessen
and Swan [3]. These latter comparisons are particularly important, confirming that
the model is able to describe the rapid and highly significant energy transfers that
occur across the wavenumber spectrum in the vicinity of an extreme event. These are
strongly dependent upon the directionality of the wavefield and critically important
when seeking to define the characteristics of an extreme, near-breaking, wave. The
paper concludes with an example of the formation of a realistic, fully nonlinear and
directionally spread wave group in the open ocea. 2001 Elsevier Science
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1. INTRODUCTION

In an ocean environment a surface wavefield is characterized by a spread of energy in
frequency and direction. From an engineering perspective, design criteria are based
extreme waves occurring in the most severe storms representing the 1 in 100 year or pet
the 1 in 10,000 year event. Such waves are both strongly nonlinear and highly transi
where the former implies complex interaction between the energy modes and the Iz
ensures that the highest or steepest water surface elevations disperse rapidly in both ¢
and time. Comparisons between field measurements (notably, Jonathan and Taylor
and unidirectional “focused” wave groups generated in a laboratory wave flume (Baldo
et al.[2]) suggest that the directionality of a wavefield plays a critical role in determinin
the characteristics of an extreme wave event.

Direct evidence of the importance of directionality is provided by recent laboratory o
servations in which Johannessen and Swan [3] report the first detailed observation
“focused” wave groups involving wave components that are spread in both frequency
direction. Although both the frequency and the directional distributions are much simg
fied compared to those typically occurring in the open ocean, these measurements
established three important points:

(a) If, for a given underlying frequency distribution, the linear sum of the compone
wave amplitudes is held constant, an increase in the directional spread leads to red
nonlinearity for an extreme event with lower crest-trough asymmetry and hence sma
maximum crest elevations.

(b) Conversely, if the amplitudes of the wave components (corresponding to a gi\
normalized frequency spectrum) are increased until the onset of wave breaking, an incr:
in the directional spread allows larger maximum limiting crest elevations.

(c) In the vicinity of an extreme event, the local nonlinear interactions produce ne
and previously unexpected high-frequency components. These are quite distinct from
well-established frequency-sum terms arising at a second order of wave steepness (Lon
Higgins and Stewart [4]). Furthermore, there is strong evidence to suggest that much of
high-frequency energy is freely propagating. This apparent broadening of the free-w
regime in the vicinity of an extreme is again dependant on the underlying directional
and plays an important role in defining the characteristics of the extreme water surf
elevation.

Despite the practical importance of these issues, they cannot be modeled using e
ing wave solutions. At the simplest level, common design wave solutions either ap
a linear random wave theory, which neglects the nonlinearity altogether, or a class
Stokes’ expansion that includes nonlinearity but neglects the distribution of energy
the frequency domain. Directionality, if it is included at all, is usually approximate
by an “in-line” velocity reduction factor, based on either simple linear arguments or
best fit to (limited) empirical data. At a higher level of sophistication, a first appro»
imation to the bound wave structure may be described by a Stokes-type perturba
expansion to second-order in terms of the interaction of linear components (Longt
Higgins and Stewart [4] and Sharma and Dean [5]). Although such solutions are of |
doubted value, identifying both the frequency-sum and the frequency-difference term:
is well known that such low-order expansions are restricted to wave systems of mode
steepness.
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Above this level of approximation, linear dispersion is no longer applicable and a the
retical model must allow for resonant wave—wave interactions. This accounts for the fi
of energy between different but related wave components. Such solutions may be b
upon the mode-coupling models originating from the experimental observations and the
of Benjamin and Feir [6] or may involve solutions to the nonlinear evolution equatiol
(NLEES), such as the extended Satliiger equation of Lo and Mei [7]. Formulations
based on either of these approaches are usually solved numerically using pseudo-sp
schemes involving fast Fourier transforms at successive time steps. Although such s
tions are efficient, with computational effort scaling dog(N) (whereN is the num-
ber of components included), they cannot be applied to waves that are very stee
to those that involve a large range of length scales. This latter constraint is particulz
restrictive in the context of ocean waves for which the frequency spectra are typice
broadbanded.

Having discounted both the mode-coupling models and solutions of the NLEEsS, the r
level of sophistication involves the numerical solution of the exact (Euler) equations
motion for water waves. Longuet-Higgins and Cokelet [8] first outlined the calculatic
procedure whereby a wavefield, initially specified in the spatial domain, could be tir
marched using the nonlinear free surface boundary conditions (Section 2 below). Althol
several alternative formulations for unidirectional waves now exist, only one pseudo-spec
approach has been extended in a fully nonlinear sense to include directionality. Johanne
and Swan [9] have applied the Fourier-based scheme proposed by Fenton and Rien
[10] to model multidirectional wave groups in water of constant depth. Although this moc
is successful when compared to narrow-banded laboratory data, it is relatively ineffici
with computational effort rising in proportion 183. This limits its ability to model realistic
broadbanded ocean spectra.

In a unidirectional context, more efficient boundary integral models exist, with run tim
proportional toN2. In particular, Dold and Peregrine [11] outline a scheme, based «
the Cauchy integral formula, that is highly accurate, stable, and computationally efficie
Unfortunately, such schemes cannot easily be extended to include a third dimension. C
methods based around the Green function can be adapted to include a third dimensio
demonstrated by Isaacson and Cheung [12]. However, this model only satisfied a sec
order approximation of the governing equations. Attempts to satisfy the fully nonline
equations have resulted in very unstable solutions. Accordingly, even the most sophistic
wave models are unable to provide a physically realistic description of extreme oc
waves.

The present paper addresses this point. It provides a new, fully nonlinear wave mode!
propriate to the description of extreme waves arising in realistic ocean spectra, charactel
by a significant spread of energy in both frequency and direction. Section 2 commences
a brief review of the governing equations and their application in a time-marching soluti
A major improvement to the Fourier-based scheme for unidirectional waves (Craig ¢
Sulem [13]) is also introduced. This involves the introduction of the Dirichlet-Neumat
operator, referred to as the G-operator, to transform values of the velocity potential
the water surface into the vertical derivative of the velocity potential. As a consequer
run times proportional tN log(N) are achieved. Although this solution is in some re-
spects less capable than the Cauchy integral formulations (with the surface restricte
a single-value function of the spatial position, solutions cannot be advanced beyond
point of wave overturning), it has the overriding advantage of being expandable to th
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dimensions. Section 2 concludes with a brief outline of the proposed 3-D solution. T
derivation of the new 3-D G-operator is given in Section 3, while Section 4 describes 1
numerical formulation including the time-marching procedure, the need for filtering al
the numerical accuracy. The initial conditions appropriate to the commencement of
scheme are discussed in Section 5, and some preliminary results are provided to der
strate the success of the proposed model. In Section 6 comparisons are first provided
laboratory data [3] involving highly nonlinear, near-breaking wave groups that are spre
in both frequency and direction. Several test cases are considered and the numerical pr
tions shown to be in very good agreement with the observed data. In the second part of
section, full-scale calculations are undertaken involving an extreme wave in a JONSW
spectrum. This corresponds to a typical 1 in 100 year design event (for the northern N
Sea) and represents the first calculations, involving a realistic broadbanded spectrum,
are both fully nonlinear and directionally spread. Concluding remarks and suggestions
further work are given in Section 7.

2. BACKGROUND

2.1. Governing Equations

The required solution must satisfy the governing equations for the evolution of a wavefi
propagating on the free surface of a three-dimensional body of fluid. If the wave-induc
fluid motion is assumed irrotational, a velocity potentigk, y, z, t) can be defined whete
indicates time andx, y, z) represent the usual Cartesian coordinates in wixckr) defines
a horizontal plane located at the mean water levelzindneasured vertically upward. The
velocity vectoru = (u, v, w), is defined byu = V¢, whereV = (9, dy, 9,). If the fluid is
assumed to be incompressible, mass continuity req¥ites: 0, which, expressed in terms
of ¢ yields Laplace’s equation, is

V2 =0 (€H)

This equation applies throughout the fluid domaiy), which is bounded by a horizontal
bed atz= —h and the free surface defined ay= n(x, y,t). On these boundaries the
conditions apply:

$;=0 on z=-h 2
and

¢+ 3IVelP+gn=0

on z=rn(x,y,t), (3a & 3b)
Ut+nx¢x+ny¢y_¢z=0}

where g is the gravitational acceleration and the subscript denotes differentiation wi
respect to the variable. The first of these equations (2) denotes the fact that the horizc
bed is assumed impermeable, while the latter (3a) and (3b) define the dynamic and kinen
free surface boundary conditions. These conditions respectively require the pressure ¢
water surface to be constant and the fluid particles on the surface to remain there.
Equations (3a) and (3b) provide the basis of all time-marching solutions. Simple re
rangement defingg; andn; in terms ofy and the spatial derivatives gfand¢ evaluated
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at the water surface. If at some initial times= ty, a spatial representation gfand¢ is
given, and it is assumed that their gradients inxhg, andz directions can be evaluated,
and¢; can be defined and the solution successfully time marchee-tl + At. With an
appropriate concern for accuracy, repeated application allows the evolution of the wavef
over large times.

2.2. Application of the Dirichlet-Neumann Operator

In unidirectional waves, the early Fourier-based spectral method of Fenton and Riene
[10] described the surface elevation

N/2 _
nO) =Y and @
n=0
and the corresponding velocity potential
N/2 _
$(x.2) = Ancoshiky(z+ h))e*, ®)
n=0

wherea,, andA,, are functions of time onlk, = nky is an integer multiple of the fundamen-
tal wavenumbeky = 27 /1o (Whereig is the fundamental wave length)l/2 represents
the number of terms in the Fourier series, ahds number of surface calculation points.
In this form, the water surface elevation (4) can be represented by a Fourier series, w
the explicit inclusion ofz in the velocity potential (5) avoids the difficulty of defining the
spatial gradient, at the water surface (Egs. (3a) and (3b)). Unfortunately, the downsi
of this approach is that while the surface elevation can be time stepped using a fast Fo
transform (FFT), the derivativa®\,); heeded to advancg require the solution of a ma-
trix of N simultaneous equations. This latter activity is responsible for the scheme’s p
computational efficiency and severe limitations when extended to three dimensions.
Using atheorem proposed by Coifman and Meyer [14], Craig and Sulem [13] introduce
Dirichlet—Neumann operator, referred to as their G-operator, to convert values of the velo
potential on the water surfacg(x, (n(x, t),t) = ®(x, t), into its spatial derivatives. In a
formal sense, the Dirichlet-Neumann operator concerns the normal deriativerhere
n is an outward facing normal. However, Craig and Sulem [13] defined their G-opera
such that

G = (¢, — 77x¢x)z=n- (6)

In this way, the kinematic free surface boundary condition (3b) appropriate to unidirectiol
waves @y = ¢y = 0) becomes

n = G(n)®. (7a)
Noting that the temporal derivative of the surface velocity potential is defined; by

(¢t + ¢znt) 2=y, Where the second term in the brackets reflects the vertical motion of t
surface profile, the dynamic free-surface boundary condition (Eq. (3a)) is rearrange
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give

oy = (D)2 — (n)? — 21 Pxne) — . (7b)

2(1+ (n0)?
Using Egs. (7a) and (7b) the surface paramejeand ® can be time stepped in the usual
way. The advantage of this approach is that for unidirectional waves, only equations
volving terms on the one-dimensional free surface need to be solved, with; lzott &
represented by a Fourier series. It is this approach that the present paper seeks to exte
multidirectional wavefields.

More recently, Craiget al. [15] and Nicholls [16] have provided descriptions of the
Dirichlet-Neumann operator for three-dimensional domains. In the latter case, Nicholls
applied numerical continuation methods to both two- and three-dimensional wave proble
However, the computational efficiency of this scheme is such that parallel computat
power is required to resolve a small number of wave components. In contrast, the pre
paper adopts an alternative formulation, based on the scheme originally outlined by C
and Sulem [13], and seeks to model a large number of interacting wave components tyy
of those occurring in a real sea state.

2.3. Solution Procedure

Before providing a full derivation of the new three-dimensional G-operator, it is
value to give a brief overview of the solution procedure. If the dependant varialdes
n are to be represented by Fourier series in the horizontal plane, one possible solu
assumes that the wave motion is periodic in bottwtlaady directions. IfA, andi, define
the fundamental wavelengths in theandy directions,n(x + Ay, y + Ay) = n(X, y) and
d(X+Ax, Y+ Ay, 2) = ¢(X, Y, 2), defining a fundamental domain that is rectangular ir
character. At this point, it is perhaps of interest to note that there are other periodic dom:
for functions of two variables that are not necessarily rectangular. These nonrectang
domains are not considered in the present paper, but may be important when conside
some doubly periodic motions such as the five-wave reasonant interactions that occt
deep water.

In the present rectangular domain, one class of solution that satisfies the periodic
straint noted above is given by

¢ = i i aw (2)€ Y, (8)

k=—00l=—00

In a Fourier systenk andl are integer multiples of the fundamental wavenumber compc
nents in thex andy directions, respectively, so that= kgnandl = lom, wherekg = 27 /A4,

lo = 27 /Ay, andn andm are integers. The unknown local constaami$z) may be defined

in terms of global parameters by substituting Eq. (8) into (1) and solving the resulting par
differential equation subject to the boundary conditions given in Eq. (2). This yields

o0 o0

¢ = Z Z o coshK (z 4 hy)e HY), (9a)

k=—00l=—00

whereK = +/k? + 12 and the parametesg, are global constants. Evaluatipgt the water
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surfacez = n, gives

®= > > ancostK(n+ h)e®Hy). (9b)

k=—o00l=—00

The solution procedure now requires a new three-dimensional G-operator that transfc
@ into ¢, evaluated ax = #:

(d2)z=y = G(n)®. (10)
Using Eq. (9a),
(@Dz=n = Y, > o Ksinh(K (n + h))d ®HY, (12)
k=—o00l=—00

Comparing Egs. (9b), (10), and (11) the transformation implied by the G-operator sim,
involves the “multiplication” byK tanh(K (n + h)) for all values ofk, |, x, andy. Un-
fortunately, multiplications irx, y space and Fourier multiplications kj| space do not
commute, a fact that is closely related to the Heisenburg uncertainty principle [17]. T
is a particular problem in the evaluation of t&KH(n + h)), which contains information in
both the wavenumber domain and the physical domain.

To overcome this difficulty, the cosh and sinh terms in Egs. (9b) and (11) are expan
using a Taylor series expansion abgut 0. In these expansions, “multiplications” appro-
priate to the two domains can be resolved, with Fourier transforms (FTs) used to con
between the wavenumber and physical domains. Substituting these expansions into Eq
allows the G-operator to be evaluated at various orders. In this way, a solution appropt
forall k, I, x, andy is achieved.

Having evaluated the new 3-D G-operator (10), the partial derivativesevtluated at
z = n may be defined in a similar manner to that outlined in Section 2.2 giving:

(¢x)z=n = &y — G @ (128.)
((by)z:n = q)y - nyG(n)d> (12b)
(@) 2=y = Pt — ntG(n) D. (12c)

Applying these results the two nonlinear boundary conditions can be rewritten as
=GP — (nxdx — Ny ¢y)z=n (133-)
1 1
@ =GP = S(GMP)? = J[(#0)” + () ]e=y — 91 (13b)

It is these equations that will be time marched to define the evolution of a fully nonline
and directionally spread wavefield.

3. THE NEW 3-D G-OPERATOR

3.1. Mathematical Derivation

Coifman and Meyer [14] illustrated that an operator of the forr® Gf) remains analytic
provided the Lipschitz norm (the maximum slope)pfemains bounded bR, where
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R is the radius of convergence. As the spectral (wavenumber) bandwidth of the probl
increases R reduces, bBi(n) remains analytic provided the water surfagg i€ neither
locally very steep nor excessively far from the mean water level.

An analytic operator can be expanded in terms of a convergent Taylor expansion

G =Y Gjm), (14)
j=0

in which eachGj (n) is homogeneous and of degrgén 1 such that
Gj(Bn = B'Gj(m), (15)

whereg is a simple scaling parameter.

To obtain the homogeneous expansion of this operator, Egs. (9b) and (11) are expat
aboutn = 0 using a Taylor series. Within these series expansions, successive derivat
are collected in terms of odd and even powers that conveniently segregate inthyosh
and sinlikh). For simplicity these equations and those shown hereafter (until indicat:
otherwise) are for a single wavenumber component involving only one vallarod k.
However, throughout the derivation it should be remembered that the overall solution m
incorporate many wavenumber components. Expanding Eg. (9b) and (11) yields

1 ; 1 P i
=Y 77 (Km? costKh) + > 7 (Km? sinh(Kh) a€ Y (16a)
j>0 j>0
_jJeven ondd ]

K P K ; i
($a)amy = | D 7 (K sinh(Ki) + 3 = (Kn)! costKh) | ane . (16)
_j]e%/gn jjo>d%

Substituting these expansions into Eq. (10) and dividing by @6kh gives

= 1 1 .
ZGm(n) Z — (Km! + Z — (K tanh(Kh) g € xHY)
m=0 i=0 I -0 J!
jeven jodd
K j K ' i (kx-+ly)

- Z ,fl(Kn)Jtanr(Kh)JrZﬁ(Kn)l o€ KXY, 17)

j=0 ] j>0 J

jeven jodd

To simplify this equation the summations on the left-hand side are reordered using
series law

dam) bj=) ( ambj-m> (18)
m=0 =0 0

j=0 m=
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to produce a summation of homogeneous powers from which even and odd terms of
same degree can be identified. Therefore, recursive formulas Gy af) i € 1Y) are
obtained as follows.

For j > 0and even

Gj(nae Y = .—|(nK)' K tanh(K h)ajq e <)

- > Gm(n) ,(nK)i*mak.e‘(m'W
m<j )
meven

-> e ), (1K)~ tanh(K hyagee Y (19a)
rT:d]d

For j > 1and odd

Gj(naa€ @Y = .—I(nK)l K ey (1Y)

- Gm(n) ).mK)i—maklé(kX*'y)
rrT?o<d]d
- > Gl 5 )|(nK)i—mtanr(Kh)ak|é<kx+'y>. (19b)

m<j
meven

Equations (19a) and (19b) describe the solution for a single Fourier component. Us
Fourier analysis, it may be shown that a solution appropriate to multiple components
be obtained by integrating over all wavenumber components,

f(D)D(X,y) = i//f(K)aHéW'y)dkdl, (20)
Ar2
with
D=-i3 and ay= //cb(x, y)e  ©HY dx dy,

whereD is a complex radial derivative operator in physical space, /%2 + y2, anday
are the global constants found from a Fourier transforrb of
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When f (K) = 1, Eq. (20) is simply the inverse Fourier transform, recreating the surfa
values of¢ from the global constants,. When Eq. (20) is applied to more complex
functions, the results are of greater significance. For exampfgKf) = K, then Eq. (20)
gives

1 .
—//Kame'(k""y)dk dl= Do, (21a)
452
while if f(K) = tanhK)
1 .
ymes / / tanh(K oy € 1) dk dI = tanh(D) ®. (21b)
TT

Applying this solution to all parts of Egs. (19a) and (19b) transforms égha,q e <)
terminto f (D)®. Accordingly, the first term of the G-operatgr& 0in Eq. (19a)) is given
by Goe ©HY) = ktanh(kh) oy € 1Y) which becomes

Ggo = Dtanh(Dh). (22a)
Similarly, the second and third terms are given by

G1(n) = nD? — Dtanh Dh)n D tanh Dh) (22b)
1 1

Go(n) = EnzDthank(Dh) — nD?yDtanh(Dh) — EDtanr(Dh)nZD2
+ D tanh(Dh)» D tanh(Dh)» D tanh(Dh). (22¢)

Although the calculation of these expressions is relatively easy, the number of FTs
quired for their evaluation increases rapidly with each additional order of the operator. E:
time the D-operator (Eq. (20)) is encountered, two FTs are required. The first conve
physical values to the wavenumber domain, where differentiation takes place, while
second transforms the values back into the physical domain. AccordingdW,défines
the order of truncation of Eq. (14), a total @'+2 — 2) FTs are made with this recursive
form.

To reduce the computational effort, Vijfvinkel [18] pioneered a method based on tl
elimination of repeated calculations and so speeded up the calculation of the original (2
G-operator [13]. Within the new 3-D G-operator, a separate study of the terms arising
each order has revealed a similar pattern of duplication. For example, the zero- and f
order terms both calculat® tanhDh). Therefore, the first-order term can be evaluatec
more efficiently using the result frofg, such thaG () = nD? — D tanhDh);Go. This
simple procedure reduces the FTs by two. Other more complex patterns also exist, spee
upthe evaluation at each additional order. The “improved” method for evaluating Egs. (22
(22c), together with the higher orders, may be summarized accordingly as

nDn+l men nDn+1t Dh men

n<m n<m
nodd neven
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TABLE |
Number of FFTs Required to Evalutate the New G-operator

M o 1 2 3 4 5 6 7 8 9

Original 2 6 14 30 62 126 254 510 1022 2046
Quickform 2 5 9 14 20 27 35 44 54 65

where

o=@
npn "D"tanh(Dh)[wi_
im0 = — Z n [MJ n] Z n h )[M] nl

n!

1=n<j 1<n<j
neven nodd

Within this improved solution, the number of FTs is reduceél(ﬂsil + 1)(M + 4). Since
the overall computational effort is largely dependent upon the number of FTs calculat
the improvement associated with this latter scheme is significant, as indicated in Tab
For example, the numerical results presented in Section 6 were mostly undertaken wi
truncation order oM = 7. In this case, the improved form of the equations is over an ordk
of magnitude faster than the original, with no corresponding loss of accuracy.

3.2. Truncation Order

The optimal value for the truncation ordbt in Eq. (14) depends upon both the non-
linearity of the wave problem and the number of points (or Fourier components) usec
define the water surface. To examine the characteristics of the operator, an analytical 1
order unidirectional Stokes’ solution [19] was used to calcujedad ®, together with the
corresponding vertical velocities arising at the water surface, for a unidirectional regt
wave of periodlT = 2.2 s propagating in a water depthlof= 1.2 m. An equivalent set of
vertical velocities arising at the water surface may also be calculated via the G-operato
its 2-D form appropriate to unidirectional waves) based on the predicted valyesdfd.
Comparison between these velocities and the Stokes’ results, where the latter are exe
fifth-order and consistent with and®, highlights errors within the G-operator.

Figure 1 concerns the percentage errors in the surface velocities for a wide variety of
conditions. In both parts of this figure the dotted vertical line defines the truncation or
(M = 7) adopted in the subsequent sections. These results demonstrate three impc
points in relation to the accuracy of the operator:

(&) WhenM is small, high-order corrections are negligible. In contrast, wida large,
numerical errors can quickly overwhelm any anticipated improvement from the highe
order contributions. This effect is apparent in both part (a) and (b) of Fig. 1, where ther
a reduction in the errors up to some optimal truncation order. Beyond this point, the ert
rapidly increase.

(b) Fig. 1a shows that as the number of surface poMtsncreases up to 512, the op-
timal value of M also increases, resulting in smaller errors. An increasd improves
the description of the surface profile, which in turn allowssand ®, to be calculated
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(a) -
108 3 —o— N=128 1.8
Wy | oo
T 10° 1 =
& 197 | —e— N-1024 X .
g 10 —*— N=2048 F =
L 4ot ;o
= —=— N=4096 /
8 10% 1 /
— 2 —
d>> 10
8 10" 1
o 10° ¥
% 107 1
g1
5 10° 1
s o107 1
Wy 4

10 1

107 1

) T T T T T T T T
0 2 4 6 8 10 12 14 16
Truncation Order (M)
(b) 10%

105 3
10* 1
10° 1
102 3
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10°
107 7
102 3
10° 3
10 7
10° 3
10—6 —
10-7 —
10% 3
10° 3

Error in surface velocities (%)

Truncation Order (M)

FIG. 1. Changes to the errors made within the G-operator. (a) As the number of surface pojrits (
varied.ka = 0.20, kh = 1.2. (b) As the fundamental wave amplitud&)(s varied.N = 1024 k = 0.96 radm?,
h=12m.

more accurately. However, fdf > 512, the numerical errors become significant, reducin
the optimal value oM. This is due to the wave energy being more finely spread acro
many wavenumber components, with each value becoming closer to the limits of the c«
puters numerical accuracy (15 significant figures). This represents a significant restric
with all Fourier type models as it limits the range of wavelengths that can be model
simultaneously.

(c) As the water surface becomes more nonlinear, the rate of improvement due to e
additional order of the G-operator decreases, although the optimal truncation order
creases (Fig. 1b). This reflects a balance between gaining accuracy from the evaluatic
higher order terms and losing accuracy to numerical errors. Reducing the truncation o
when modeling linear or near-linear waves is therefore beneficial, while an increase in
truncation order is appropriate as the waves become more nonlinear.
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4. NUMERICAL FORMULATION

4.1. Implementation

The calculation of the G-operator and the remaining terms in Egs. (13a) and (13b)
quires the horizontal derivatives @f andyn. The partial derivatives of each variable in the
horizontal direction are achieved using FTs: a transformation into spectral space, follo
by a multiplication byik, (for the calculation o) and finally an inverse FT. These FTs
are performed using a fast Fourier transform (FFT) technique, the characteristics of wi
are such that the number of calculations varies accordibhglag(N), provided the number
of surface points is an integer power of 2. Although there are numerous implementation
such schemes, each boasting superior performance in a variety of tasks, the current sc
is based upon the implementation developed by Frigo and Johnson [20] and known a:
“fastest Fourier transform in the West” or FFTW. Using FFTW a large numerical run wi
N = 256 x 256 surface points spends 60% of the computational time performing FF
In such a run, 20 wave periods involving a near-breaking wave event takes approxima
4 hours on a Pentium 111 800 MHz computer.

4.2. Time Marching

Having identified the G-operator and the total horizontal derivativesasfd® at some
initial time t = tp, Egs. (13a) and (13b) may be time marched to yield a description |
the wavefield at some new time= ty + At, whereAt defines the time step. Within the
present 3-D model, the time marching is achieved using a scheme similar to the fou
order Adams—Bashford/Moulton predictor—corrector method outlined in Rteds[21].
The only difference is that a fifth-order solution to Moulton’s corrector is used, rather th
the original fourth-order solution. Accordingly, the predictor is defined as

At . . . .
Yn+1 = Yn + ﬂ (55yn - 59Ynfl + 37)’n72 - 9yn73) + O(AtS) (24&)
and the corrector as
At . . . . .
Vi1 =Yn+ =0 (251¥41 + 646y, — 264y,_1 + 106yn_» — 19¥,_3) + O(At®), (24b)

where the overdot denotes a derivative with respect to time. The adjustment to the corre
involves the inclusion of the termy,_3. Since this is already required in the predictor, the
additional effort of including it is insignificant compared to the improvement in accurac
To commence this scheme, the information required at the first three time steps is prov
by a fourth-order Runge—Kutta method.

4.3. Filtering

In any time-marching scheme, the main source of numerical errors arises at those loca
on the water surface where the rates of changeare largest. This is primarily due to the
difficulty of maintaining a sufficient degree of numerical accuracy when combining numbe
of opposing size (i.e., X 10° + 1 x 107). In addition, aliasing can also contribute to
growth of high wavenumber errors, particularly when the energy is constrained withit
small wavenumber range. After a large number of time steps, these difficulties can lea
spurious high-wavenumber oscillations in the water surface. Similar effects were obsel
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in the unidirectional models proposed by Dommermuth and Yue [22], Craig and Sulem [1
and Johannessen [24]. To overcome this difficulty, [22] proposed a five-point smooth
function to restrict the growth of unrealistically high wavenumbers, while [24] applied
simple cutoff filter.

The five-point filtering method was adapted for the present 3-D model by filtering radia
away from the fundamental wavenumbékg, (o). The resulting filter functionA (K, ),
is described by

1, K <w
AK, W) ={ i[5+4cognK) —cog2nK), ¥ <K <1,
0, K>1

(25)

N k \? I \?2
with the ratioK = ( ) + < ) ,
kmax ImaX

wherekmax andl nax are the largest wavenumber values in each respective dirextanufy)
and VW is a constant between 0 and 1 defining the level of filteriig= O representing
the strongest filtering. Within the present study~= 0.9 was typically applied, although
the exact value depends upon the spectral bandwidth of the problem under considera
Indeed, the stability of the new numerical model was found to be such that in many case
filtering at all was required. In the small number of cases where it was found to be necess
it merely involved the suppression of very low energy levels located in the high-frequer
tail of the spectrum. By using this approach we ensured that any difficulties associated \
numerical accuracy and/or aliasing were rapidly overcome.

4.4. Accuracy

To monitor the accuracy of the numerical scheme, the total wave energy within 1
computational domairkoa, Was calculated at each time step using the solution propos
by Benjamin and Olver [23],

1
Etotal = é /(Cbm + 9772)» (26)
S

where the integration is performed over the entire water surface. Although Eq. (26) is ex
it only involves amplitude squared terms and is therefore only weakly weighted to thc
areas where the wave motion is most vigorous. Accordingly, very gradual shifts of ene
throughout the domain may dwarf relatively large but strongly localized errorsin the vicini
of an extreme or focused wave event. This difficulty becomes more significant as the ¢
of the numerical domain increases relative to the wavelength corresponding to the pea
the spectrum.

In an attempt to overcome this concern, the reversibility of the solution was also cc
sidered. This involved undertaking a complete numerical run using the final results as
input to a second run in which the waves propagate backward. The ability of the sche
to reproduce the initial starting condition provides strong evidence that the errors as
ciated with both the time-marching procedure (Egs. (24a) and (24b)) and the numer
rounding are very small. Calculations of this type do not, however, provide guidan
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between runs with increasing nonlinearity:= 512 A, = 30 m.

as to the accuracy of either the G-operator or the FTs. These must be examined u
Eq. (26).

Figures 2a and 2b provide a typical sequence of results, highlighting the accuracy of
proposed scheme. Figure 2a concerns a laboratory-scale sea state that evolves or fc
to produce a highly nonlinear, near-breaking, wave event=a0. Two error traces are
presented. The first represents an initial run that commendes-at20 s and continues
through focus untit = +10 s. The second represents a reverse simulation in which t
conditions at = 410 s are run backward until= —20 s. Comparing these results, the
predicted water surface elevations are effectively identical, with a difference of only 2
1075 m in the maximum crest elevation. Furthermore, the errors in total energy, Eq. (2
are also similar in the vicinity of the focused event with maximum errors in the forward rt
of 0.0058% compared to 0.0061% in the reverse run. Figure 2b again concerns a labora
scale sea state and contrasts the growth in the maximum error for five increasingly nonli
wave groups, wheré\ represents the linear sum of the component wave amplitudes a
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A = 0.05 m again represents a highly nonlinear wave event. In each case, the errors ir
total energy remain very small when the evolution of the wavefield is essentially line
As the nonlinearity increases, both locally within a given sea state and with incredsing
the maximum errors inevitably increase. However, even in the most nonlinear cases,
maximum error in the total energy is always less than 0.01%.

5. MODEL IMPLEMENTATION AND PRELIMINARY RESULTS

5.1. Initial Conditions

To commence simulations using the proposed modahd® must be defined at each of
the calculation points across the entire water surface. This task is complicated by two fz
First, the evolution of a wavefield is traditionally observed in time at a fixed spatial locatic
with the corresponding wave spectrum represented by a distribution in the frequency dom
Second, with the proposed method based on Fourier analysis, the required descriptic
the spatial domain must be periodic (Eg. (8)).

To explain how these difficulties are overcome, we will first consider a unidirection
wavefield. In the first stage of the analysis, the frequency spectrum must be represente
a set of discrete amplitude components in the wavenumber domain, where the numbe
components should be an integer power of 2 to maximize the efficiency of the FFTs. Det
of the procedure to define these wavenumber components vary depending on whethe
modelis applied to laboratory data, for which the input is defined by a time-series sent to
wave paddle, or full-scale field data in whi&}), defines a continuous distribution of energy
in the frequency domain. Nevertheless, both procedures are based on the assumptiol
the information in the frequency (or time) domain defines the underlying linear or free
propagating waves.

With a set of discrete wavenumber components identified, the corresponding value
n and® may be based on a simple analytical theory, either linear or second order. Sil
the present paper is primarily concerned with the description of highly nonlinear transi
waves, arising due to the focusing of wave components, a linear or second-order solu
provides an appropriate description of the initial conditions provided they are specif
well in advance of the focal time. At this point, the wave energy is widely dispersed acrc
the computational domain, and the local nonlinear interactions are thereby reduced
minimum. In an earlier study, Johannessen [24] showed that provided the second-o
correction [4] to the maximum initial water surface elevation is no greater than 2%, alinea
predictedn and @ are sufficient. In the present, study, an alternative and more rigoro
condition is applied. Repeated tests suggest that provided the second-order correction
no greater than 3%, the second-order solution can be used to generate improved ir
conditions.

To define the initial conditions appropriate to a directionally spread wavefield, a simil
process to that defined above is applied. However, in generating a unidirectional wavef
propagating at, say, 2@ thex-axis, as shown on Fig. 3, itis clear thatin a 2-D wavenumbe
spectrum involving two horizontal directiofis, 1), there is no sequential line of components
that travel at exactly this angle. Indeed, this condition only exists for waves propagating
0°, 45, and 90. To overcome this difficulty, the appropriate wave energy must be located
wavenumber components which are positioned immediately alongside the desired direc
In Fig. 3 the intersections between the’ 2iBe and the underlying 2-D wavenumber grid
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are noted by the open symbols. The distance between successive symbols indicate
contribution of wave amplitude (or wave energy) from the unidirectional spectrum to
placed within the corresponding grid.

For example, if the distance from the origin in wavenumber space is definéd by
+/kZ +12, the contribution to the wave motion that should be located in the grid spann
by two successive points, andKy, is given by

Kp
A (Ka, Kp) = / aK. 6)dK, (27)
Ka

where the unidirectional amplitude spectrétK, ), orientated at some angfeto the
X-axis, is taken to be continuous. In practice, itis usual to assumé&ad) = a(9) a(K),
wherex (0) is the proportion of the total amplitude that propagates at any given angle. Thi
are two commonly applied formulae used to describe the directional distribution. The fi
due to Mitsuyasu [25], describes the energy distribution as proportionalfg@(®), giving

an amplitude distribution of

a(P) = ¢ cos <z> (28a)

Alternatively, the second applies a wrapped normal distribution

_ ¢ 6
05(9) = ;9 ex<—2092> s (28b)

where the anglé is measured from the mean wave direction (which in the present cas
is aligned with thex-axis), ¢ is a normalizing coefficiens is the Mitsuyasu’s spreading
parameter, and, is the standard deviation of the normal distribution.

To describe a directionally spread wavefield, the above process is merely repeated-
large number of individual directions, and the distributed amplitudes are linearly summ
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Itis, however, important to note that the angular resolution improves with distance from:
origin. Accordingly, when modeling a directionally spread sea, the wavenumber dom
(nkg, mly) should be chosen so that the dominant wave energy component, correspon
to the spectral peak, is positioned as far as is possible from the éniginm = 0). Having
again identified a discrete set of wavenumber components, the corresponding value
n and ® can be calculated using linear or second-order theory, where the latter sho
be based on Longuet-Higgins [26] for infinite depth or Sharma and Dean [5] for fini
depths.

5.2. Model Parameters

Having defined the initial conditions, the model paramebgrsNy, ko, o, andAt need
to be chosen so that the desired wavefield can be accurately represented, while rema
within the practical bounds of current computing capabilitidg.and Ny define the size
of the numerical domain in each of the principal coordinate directions. These values nr
be sufficiently large to capture specific features of the water surface profile, particularly
steepness, but should not be excessively large since this encourages the growth of |
frequency numerical errors. Typical calculations have been based upon domains of
N = 256 x 256, although some cases of 52512 have also been undertaken.

The fundamental wavenumbéggandly must be sufficiently small to ensure that there
are enough wavenumber components in the most energetic parts of the spectrum. Ir
present study, this was achieved by setting the (weighted) mean position of a spectrur
each of the principal coordinate directions, to be approximatglpth of the size of the
domain:

—ZEO Z%Oaﬁ'zk ~ ikoNx and —ZE"Z%O""@' A i|0Ny. (29)
2120 2 _keo & 20 im0 ko 20

Finally, the time stepAt used in Egs. (24a) and (24b), was typically chosen so the
At < Tp/200, whereT, is the time period corresponding to the peak spectral frequenc
This choice was simply based upon the experience gained from running a large numbe
trial simulations, with varying time steps, in which the accuracy and stability of the solutic
was examined.

5.3. Preliminary Results

To gauge the success of the proposed model, a number of preliminary tests were
dertaken. The first concerns a series of unidirectional regular waves in deep water wi
wave period ofT = 1.4 s and a wave steepnesstdk/2 = 0.3. This represents approx-
imately 70% of the conventional breaking limik/2 = 0.44, for unidirectional regular
waves. The initial conditions used to generate these waves were based upon an anal
fifth-order Stokes expansion [19]. Calculations were undertaken in the fully 3-D comf
tational domain of infinite depth, with unidirectional waves propagating’ a2@, and
45° to thex-axis. Comparisons between these results and the analytical solutig(t for
are provided on Fig. 4a. These results confirm that the proposed solution is capabl
accurately simulating nonlinear waves propagating at any angle across the computati
domain.
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FIG. 4. Preliminary test results. (a) Comparison between the simulation of steady Stokesakax€8.8) at

different angles across a numerical dom&in= 128 x 128. (b) A comparison of the maximum surface elevation
for two unidirectional waves travelling at @nd 20 across an uneven spectral mesh, ke = 30 m,A, = 50 m,

N = 256 x 256. (c) The numerical errors arising during the simulation of unidirectional waves travelling at
and 20. The 0 run corresponds to a 2-D simulation with= 28.2 m, which is equivalent to the fundamental
wavelengths ok, = 1, = 30 m for the 20 case that was simulated with the 3-D modeél= 256 x 256.
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Figures 4b and 4c concern a second series of tests in which a laboratory-scale sea
involving a unidirectional broadbanded frequency spectrum, was focused to produc
highly nonlinear, near-breaking, wave event at 0. Figure 4b contrasts the time-variation
in the maximum water surface elevation anywhere within the computational domain. T
cases are considered: the first propagating ab@d the second at 20To further complicate
these comparisons, the underlying spectral mesh is asymmetrigwih30 m andi, =
50 m. Nevertheless, the computed results are again in very good agreement, confirr
that the evolution of highly nonlinear transient waves can be successfully modeled
the results shown to be independent of the direction of propagation. Figure 4c concern:s
same wave cases and describes the maximum percentage error in the total energy (Eq.
These results appear to suggest that a directional simulation may be more accurate the
equivalent unidirectional case. This probably arises due to three competing effects. F
there is a loss of accuracy due to a reduction of the fundamental wavelength in the princ
wave direction (foi, = Ay, = 30 m, the effective fundamental wavelength &t2®281 m).
Second, there is a net gain in the mathematical precision achieved by spreading the su
across an additional dimension. This effect is associated with a reduction in the magnit
of the principal horizontal derivatives (corresponding toxtendy directions), which can
therefore be more accurately manipulated. Thirdly, there is also aloss of numerical accu
from further rounding errors associated with the additional dimension. Figure 4c highligl
the importance of these competing effects and suggests that the maximum error in
total energy for a wave propagating at'29 less than half the value for an identical wave
propagating along the-axis (0). This suggests directionally spread wavefields are slightl
easier to model than unidirectional waves, albeit requiring considerably more compt
resources. Further details concerning all aspects of the numerical model, its implementa
and additional preliminary tests are given by Bateman [27].

6. DISCUSSION OF RESULTS

6.1. Comparison with Laboratory Data

Recentlaboratory data provided by [3] allows further rigorous assessment of the propc
model. This experimental study provides the first detailed measurements of a large nun
of focused wave groups spread in both frequency and direction. In particular, it incluc
several cases that were observed to be on the limit of wave breaking. Two underly
frequency spectra were considered: Case B, classified as broadig@réledT < 1.4 9);
and Case D, classified as narrow-bande® < T < 1.2 9. In each of these cases, the
sea state comprises a large number of wave components, equally spaced within the ¢
period range and of equal amplitude, simultaneously generated at the wave paddles.
direction of propagation and the relative phasing of the wave components were adju:
so that wave focusing produces a large isolated wave crest at one point in space and
Six directional distributions were considered corresponding=ooc (or unidirectional),

s =150,s = 45,s = 25,s = 10, ands = 4 in Eq. (28a).

For each combination of wave spectrusy), (w) and directional spread, a range of
input amplitudes A) were considered, wher& defines the linear sum of the component
wave amplitudesA = Z,’:‘Zlan, wherea, is the amplitude of theth wave component.
Given the nature of the focusing evert,also corresponds to the linearly predicted cres
elevation at the focal position. To distinguish between the various test cases, the nots
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and directionally spread waves. (a), (b), and (c) correspond to broadbanded frequency spectra, Case B, ar
(e), and (f) the narrow-banded frequency spectra, Case D.

adopted by Johannessen and Swan [3] will be applied herein. Accordingly, specific
cases are referred to by their input frequency spectrum, their linear amplitude sum, and
directional spread. For example, Case B66s45 corresponds to the broadbanded freqt
spectrum (Case B) with an input amplitude Af= 66 mm and a directional spread of
s =45,

Figures 5a-5f concern the time-history of the water surface elevatiyrrecorded at
(or very close to) the focal position for six highly nonlinear wave events. In each case,
input amplitude is within 4% of the limiting value at which wave breaking is first observe:
The six cases concern both broadbanded and narrow-banded frequency spectra and ir
a range of directional spreads frasn= co (or unidirectional waves denoted by “ud”),
directionally spread but relatively long-crested waves correspondisg=td5, and very
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short-crested waves with a large directional spread correspondmgt. In each case,
the numerical model is shown to be in good agreement with the laboratory data. Thi
particularly true prior to, and in the immediate vicinity of, the focal event (0). However,

at larger times after focusing> 1.0 s, there are small differences between the observe
and numerically predicted results. These are perhaps more evident in the narrow-bar
spectra (Figs. 5d-5f). This is consistent with the effects of wave reflection from the dow
stream boundary of the wave basin, a full discussion of which is given by Johannessen
Swan [3].

Indeed, it is important to note that while the experimental procedure adopted by
was specifically arranged to minimize the effects of reflection on the extreme wave eve
wave reflections present a significant problem in any 3-D wave basin. Nevertheless,
description provided by the numerical model is very good and significantly better th
either the linear or the second-order solutions also presented on Figs. 5a—5f. Indeed,
interesting to note that while the second-order solution provides an improved fit (relat
to linear theory) of the extreme wave crest, particularly as the directionality increases
provides a poor description of the adjacent wave troughs. This arises because the sec
order model cannot incorporate the local energy shifts highlighted by [3] and shown to
very significant in the description of highly nonlinear wave events. The present numeri
scheme has no such limitations.

Figures 6a and 6b concern an alternative spatial representation of the water sur
elevationy(x), at the instant of wave focusing. Two examples are provided correspondi
to B55ud and D93s4. The latter case has both the largest input amplitude sum and the la
directional spread and is in some respects the most difficult case to model. However, in |
this case and the unidirectional case, the numerical model is again in very good agreer
with the laborator data.

Given the inherent difficulty of obtaining laboratory data in the spatial domgix),
Figs. 7a—7d and 8a—-8d concern Cases B66s45 and D78s45, respectively, and pr
time-histories of the water surface elevation at four spatial locations on either side
the focal position X = 0). These results confirm that the numerical model is not onl
able to model the characteristics of an extreme wave event, but also able to model
evolution of a highly nonlinear and directionally spread wavefield in both space a
time.
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6.2. Simulations of Extreme Ocean Waves

The results presented in Sections 5.3 and 6.1 suggest that the proposed model is bo
curate and stable. More significantly, its computational efficiency is such that it provides
first realistic opportunity to model, in a fully nonlinear sense, the characteristics of extre
ocean waves involving a spread of energy in both frequency and direction. Field meas
ments confirm that the empirical JONSWAP spectrum is appropriate to the descriptior
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FIG. 8. Temporal profiles of;(t) at spatial positions either side of the nonlinear focal event. Case D78s4
(@x=-13m, (b)x=-09m, (c)x =—-0.6m, (d)x =0.1m.
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real ocean spectra in fetch-limited seas,

2 (1)4 _(m,;p)z
Spy(@) = % exp(-ﬂ—i) yexp[ 2’ ] 0=0070=<wp, 0=009w>wp, (30)
) w

where typicallye = 0.0081, 8 = 1.25, v is the peak spectral frequency, apds the
peak enhancement factor usually chosen to be between 2.8 and 3.0 for severe s
conditions.

A graphical representation of this distribution is given in Fig. 9. An important factc
to note is that although the dominant wave energy is relatively narrow banded, the hi
frequency tail introduces a significant range of time scales (approximately 1:3 in terms
wp). Furthermore, simple linear arguments define the deep water dispersion equatio
? = gk, suggesting that the range of significant length scales is at least of order 1:10.
incorporate this range, and at the same time to allow the model sufficient opportunity
describe the local energy shifts in the vicinity of an extreme event (involving both high a
low frequencies), the resolution in the directional wavenumber dothkalin must be high.
This, in turn, implies a large number of surface points within the computational doma
and explains the overriding need for computational efficiency.

Early work by Lindgren [28], together with more recent contributions from Boccotti [29]
Phillips et al. [30], and Troman®t al. [31], has shown that the most probable or averag
shape of a large wave event (providddo, > 2 whereo, is the standard deviation of the
surface elevation;(t)) is related to the autocovariance function of the underlying spectrun
Although the arguments underlying this result are fundamentally linear, assuming that
the wave components are freely propagating, it can be manipulated to yield the ini
conditions appropriate to the proposed model. The steps associated with this task al
follows:

(@) The NewWave model [31] is applied to define the linearly predicted shape of an
treme wave (specified in terms Af= nmax) With the desired underlying frequency spectrum
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(S () in Eq. (30)). In the time domain this gives the expected shape of a large wave ev
as

foOOSm(a)) COS(a)t) da)
fooosm (w) dw '

n(t) = NMmax (31)

For this wave event the amplitude spectrum of discrete wavenumber components is obtz
from

Sy (@(K))

akk) = ﬁmaxm

Aw, (32)

wherew (k) = /gktanh(kh) and Aw is the frequency interval corresponding to the dis-
cretization of the wavenumber spectrum.

(b) These discrete wave components are back calculated (linearly) to an initial time, v
before the extreme or focal event, at which the wave energy is widely dispersed (Section
Such calculations must include the effects of directionality modeled using either Egs. (2
or (28b).

(c) A simple linear or second-order analytical solution is used to generate the corr
ponding initial values for(x, y) and®(x, y) appropriate to the numerical model.

(d) Using these initial conditions the wavefield is time marched, in a fully nonlines
sense, up to and beyond the occurrence of an extreme focused event. Due to the non
interactions, this extreme event will occur at neither the linear focal time nor the linear fo
position. Nevertheless, comparisons between the nonlinear extreme event and the ori
linear predictions (Eq. (31)) highlights the importance of nonlinearity when defining «
extreme ocean wave.

The results of this process are given in Figs. 10a—10h. These calculations correspot
a JONSWAP spectrum with, = 0.46s~! andy = 1.7, a directional distribution of = 7
(or oy = 30° in Eqg. (28b)) and a linear input amplitude sum Af= 16.3 m. This case
corresponds to a typical design wave for the northern North Sea with a return perioc
10,000 years. Figures 10a—10h provide a sequence of 3-D spatial plots defining the w
surface elevationy(x, y), at discrete times in the vicinity of an extreme or focal even
occurring att = 1.6 s. The sequence commences$ at —100 s (Fig. 10a) and continues
past the focal point to = +30 s in Fig. 10h. The initial conditions appropriate to this cas
were specified using linear theorytat —100 s. The calculations incorporated 26@56
wavenumber components with = A, = 4000 m. To provide a good visual description of
the evolving wavefield each part of Fig. 10 concerns a small central region of the com
tational domain, covering 25% of the total area.

The characteristics of the extreme wave occurring 2t1.6 s on Fig. 10d is further
investigated in Fig. 11. This provides a spatial description of the water surface elevatiol
the mean wave directiom,(x), and contrasts the fully nonlinear calculations with a lineal
solution based upon the summation of the freely propagating wave componentsimpleme
within the initial conditions. As a large wave evolves, the nonlinear wave—wave interactic
cause a “downstream-shifting” of both the focal-position and the focal-time. In the pres
example, the nonlinear wave focusedkat 80 m. However, this effect has been removec
from the present comparisons in order to highlight the significant nonlinear changes in
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FIG. 10. Evolution of a short-crested, directionally spreads 7, steep wave groupl, = 135 s, h =
oo, y =1.7.

profile of the extreme wave. In particular, the largest wave crest is shown to be higher

narrower than the linear predictions due to the local nonlinear energy transfers within
wavenumber domain.

The fundamental importance of the directionality of a sea state is demonstrated by c
parison with the fully nonlinear, unidirectional wave record indicated by the dashed li

on Fig. 11. This record is based upon an identical (normalized) wave speci®),

and represents the largest nonbreaking wave that can be generated in a unidirectione
(s = 00). The difference between this and the fully nonlinear directionally spread wa

record is consistent with the laboratory findings of [3]. In particular, it confirms their hy

pothesis that an increase in the directionality of a wavefield allows larger waves to evo

prior to the onset of wave breaking.



DIRECTIONALLY SPREAD SURFACE WATER WAVES 303

=== 3D Numerical
—— 3D Linear
----- UD Numerical

20

Elevation (m)

Space (m)

FIG. 11. Spatial records of the water surface elevatipix), at the focal timet(= 0) for the near-breaking
unidirectional § = oo) and directional§ = 7) wavesy = 1.7, T, = 135 s,h = co.

7. CONCLUDING REMARKS

This paper has considered the description of surface water waves, particularly the «
lution of extreme waves due to the focusing of wave components involving a signific
spread of energy in both frequency and direction. Such waves are highly nonlinear, evol
in both space and time. To model such waves a new, fully nonlinear, spectral wave mc
has been proposed. This is based upon a form of the Dirichlet-Neumann operator sin
to the G-operator employed in the unidirectional wave model proposed by Craig and Su
[13]. Using this approach, an initial spatial representation of the water surféacey),
and the velocity potential at this surfaeg(x, y, n) = ®(x, y) can be time marched to
define the evolution of a wavefield. Furthermore, by representing:patid® as Fourier
series, the necessary spatial derivatives can be calculated rapidly using fast Fourier t
forms. The overriding advantage of this technique lies in its computational efficiency &
hence its ability to model the large range of length scales, in two coordinate directic
(X, y), associated with realistic ocean waves. Indeed, the present model provides the
solution capable of modeling, in a fully nonlinear sense, the evolution of extreme 3-D oct
waves.

The proposed model has been validated using existing regular wave theories and, pel
more importantly, by comparison with recent laboratory data describing extreme, ne
breaking waves in a directionally spread sea [3]. This data set is significant in that it provi
the first quantitative assessment of the importance of directionality in determining
characteristics of extreme waves. In particular, it shows that for a constant input amplit
sum (or constant energy level) an increase in the directionality leads to reduced nonline:
and hence lower crest elevations. Conversely, if the energy level is increased until the o
of wave breaking, an increase in directionality leads to larger limiting crest elevatiol
The present model is able to reproduce accurately these effects at a laboratory scale.
significantly, it has also demonstrated (for the first time) that similar effects may occur
the open ocean involving realistic frequency spectra and directional spreads.
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The success of the present model is important in two respects. First, there are signifi
limitations as to what can be investigated in a laboratory-scale wave basin. For exam
Johannessen and Swan [3] identify some significant and unexpected nonlinear wave—\
interactions in the vicinity of an extreme event and provide some evidence that the associ
wave components are freely propagating. However, due to the inherent difficulty of obtain
accurate, well-resolved spatial datdx, y), the precise nature of these wave component
could not be resolved. The present model provides an ideal vehicle to investigate this pc
Secondly, from a more practical perspective, the description of extreme ocean wave
fundamental to the safe and economic design of both fixed and floating structures. Re
events, involving the impact of wave crests on the underside of fixed structures, the gre
water inundation of moored structures, and the continued loss of shipping (involving bt
large and small vessels) suggests that there are aspects of the ocean wave environme
are not well modeled. Indeed, there is much on-going discussion of so-called “freak” wav
or those which are larger or occur more often than is statistically predicted. The pres
model provides an important tool with which to investigate these practically importa
events and to identify if there are new physical processes associated with the occurren
extreme ocean waves.
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