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Thispaperconcernsthedescriptionof transientandhighlynonlinear,near-breaking,
surface water waves that are characterized by a spread of wave energy in both fre-
quency and direction. A new spectral wave model is described that allows both the
unsteadiness and the directionality of a wave field to be described in a fully nonlinear
sense. The methodology underlying the scheme is similar to the unidirectional model
developed previously by Craig and Sulem [13]. An approximation of the Dirichlet–
Neumann operator is made that transforms the boundary values of the velocity poten-
tial, φ, at the water surface into values ofφz. This allows an initial spatial representa-
tion of the water surface elevation and the velocity potential on this surface to be time
marched using fast Fourier transforms. The advantages of this technique lie in both
its efficiency and its robustness. These are of fundamental importance when seeking
to model extreme ocean waves, involving broad-banded frequency spectra and re-
alistic directional spreads, since they incorporate a large range of horizontal length
scales. In its present form, the model is appropriate to waves propagating on water of
constant depth; it runs on a PC and is sufficiently stable to predict the evolution of near-
breaking waves. Indeed, the only significant restriction arises due to the Fourier series
representation. This requires the water surface elevation to be a single-valued func-
tion of the horizontal coordinates and therefore limits the model to non-overturning
waves. The new numerical scheme is validated against a fifth-order Stokes solution
for regular waves and the recent experimental observations provided by Johannessen
and Swan [3]. These latter comparisons are particularly important, confirming that
the model is able to describe the rapid and highly significant energy transfers that
occur across the wavenumber spectrum in the vicinity of an extreme event. These are
strongly dependent upon the directionality of the wavefield and critically important
when seeking to define the characteristics of an extreme, near-breaking, wave. The
paper concludes with an example of the formation of a realistic, fully nonlinear and
directionally spread wave group in the open ocean.c© 2001 Elsevier Science
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1. INTRODUCTION

In an ocean environment a surface wavefield is characterized by a spread of energy in both
frequency and direction. From an engineering perspective, design criteria are based upon
extreme waves occurring in the most severe storms representing the 1 in 100 year or perhaps
the 1 in 10,000 year event. Such waves are both strongly nonlinear and highly transient,
where the former implies complex interaction between the energy modes and the latter
ensures that the highest or steepest water surface elevations disperse rapidly in both space
and time. Comparisons between field measurements (notably, Jonathan and Taylor [1])
and unidirectional “focused” wave groups generated in a laboratory wave flume (Baldock,
et al. [2]) suggest that the directionality of a wavefield plays a critical role in determining
the characteristics of an extreme wave event.

Direct evidence of the importance of directionality is provided by recent laboratory ob-
servations in which Johannessen and Swan [3] report the first detailed observations of
“focused” wave groups involving wave components that are spread in both frequency and
direction. Although both the frequency and the directional distributions are much simpli-
fied compared to those typically occurring in the open ocean, these measurements have
established three important points:

(a) If, for a given underlying frequency distribution, the linear sum of the component
wave amplitudes is held constant, an increase in the directional spread leads to reduced
nonlinearity for an extreme event with lower crest-trough asymmetry and hence smaller
maximum crest elevations.

(b) Conversely, if the amplitudes of the wave components (corresponding to a given
normalized frequency spectrum) are increased until the onset of wave breaking, an increase
in the directional spread allows larger maximum limiting crest elevations.

(c) In the vicinity of an extreme event, the local nonlinear interactions produce new
and previously unexpected high-frequency components. These are quite distinct from the
well-established frequency-sum terms arising at a second order of wave steepness (Longuet-
Higgins and Stewart [4]). Furthermore, there is strong evidence to suggest that much of this
high-frequency energy is freely propagating. This apparent broadening of the free-wave
regime in the vicinity of an extreme is again dependant on the underlying directionality
and plays an important role in defining the characteristics of the extreme water surface
elevation.

Despite the practical importance of these issues, they cannot be modeled using exist-
ing wave solutions. At the simplest level, common design wave solutions either apply
a linear random wave theory, which neglects the nonlinearity altogether, or a classical
Stokes’ expansion that includes nonlinearity but neglects the distribution of energy in
the frequency domain. Directionality, if it is included at all, is usually approximated
by an “in-line” velocity reduction factor, based on either simple linear arguments or a
best fit to (limited) empirical data. At a higher level of sophistication, a first approx-
imation to the bound wave structure may be described by a Stokes-type perturbation
expansion to second-order in terms of the interaction of linear components (Longuet-
Higgins and Stewart [4] and Sharma and Dean [5]). Although such solutions are of un-
doubted value, identifying both the frequency-sum and the frequency-difference terms, it
is well known that such low-order expansions are restricted to wave systems of moderate
steepness.
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Above this level of approximation, linear dispersion is no longer applicable and a theo-
retical model must allow for resonant wave–wave interactions. This accounts for the flow
of energy between different but related wave components. Such solutions may be based
upon the mode-coupling models originating from the experimental observations and theory
of Benjamin and Feir [6] or may involve solutions to the nonlinear evolution equations
(NLEEs), such as the extended Schr¨odinger equation of Lo and Mei [7]. Formulations
based on either of these approaches are usually solved numerically using pseudo-spectral
schemes involving fast Fourier transforms at successive time steps. Although such solu-
tions are efficient, with computational effort scaling asN̂ log(N̂) (where N̂ is the num-
ber of components included), they cannot be applied to waves that are very steep or
to those that involve a large range of length scales. This latter constraint is particularly
restrictive in the context of ocean waves for which the frequency spectra are typically
broadbanded.

Having discounted both the mode-coupling models and solutions of the NLEEs, the next
level of sophistication involves the numerical solution of the exact (Euler) equations of
motion for water waves. Longuet-Higgins and Cokelet [8] first outlined the calculation
procedure whereby a wavefield, initially specified in the spatial domain, could be time
marched using the nonlinear free surface boundary conditions (Section 2 below). Although
several alternative formulations for unidirectional waves now exist, only one pseudo-spectral
approach has been extended in a fully nonlinear sense to include directionality. Johannessen
and Swan [9] have applied the Fourier-based scheme proposed by Fenton and Rienecker
[10] to model multidirectional wave groups in water of constant depth. Although this model
is successful when compared to narrow-banded laboratory data, it is relatively inefficient,
with computational effort rising in proportion tôN3. This limits its ability to model realistic
broadbanded ocean spectra.

In a unidirectional context, more efficient boundary integral models exist, with run times
proportional toN̂2. In particular, Dold and Peregrine [11] outline a scheme, based on
the Cauchy integral formula, that is highly accurate, stable, and computationally efficient.
Unfortunately, such schemes cannot easily be extended to include a third dimension. Other
methods based around the Green function can be adapted to include a third dimension, as
demonstrated by Isaacson and Cheung [12]. However, this model only satisfied a second-
order approximation of the governing equations. Attempts to satisfy the fully nonlinear
equations have resulted in very unstable solutions. Accordingly, even the most sophisticated
wave models are unable to provide a physically realistic description of extreme ocean
waves.

The present paper addresses this point. It provides a new, fully nonlinear wave model ap-
propriate to the description of extreme waves arising in realistic ocean spectra, characterized
by a significant spread of energy in both frequency and direction. Section 2 commences with
a brief review of the governing equations and their application in a time-marching solution.
A major improvement to the Fourier-based scheme for unidirectional waves (Craig and
Sulem [13]) is also introduced. This involves the introduction of the Dirichlet–Neumann
operator, referred to as the G-operator, to transform values of the velocity potential on
the water surface into the vertical derivative of the velocity potential. As a consequence,
run times proportional toN̂ log(N̂) are achieved. Although this solution is in some re-
spects less capable than the Cauchy integral formulations (with the surface restricted to
a single-value function of the spatial position, solutions cannot be advanced beyond the
point of wave overturning), it has the overriding advantage of being expandable to three
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dimensions. Section 2 concludes with a brief outline of the proposed 3-D solution. The
derivation of the new 3-D G-operator is given in Section 3, while Section 4 describes the
numerical formulation including the time-marching procedure, the need for filtering and
the numerical accuracy. The initial conditions appropriate to the commencement of the
scheme are discussed in Section 5, and some preliminary results are provided to demon-
strate the success of the proposed model. In Section 6 comparisons are first provided with
laboratory data [3] involving highly nonlinear, near-breaking wave groups that are spread
in both frequency and direction. Several test cases are considered and the numerical predic-
tions shown to be in very good agreement with the observed data. In the second part of this
section, full-scale calculations are undertaken involving an extreme wave in a JONSWAP
spectrum. This corresponds to a typical 1 in 100 year design event (for the northern North
Sea) and represents the first calculations, involving a realistic broadbanded spectrum, that
are both fully nonlinear and directionally spread. Concluding remarks and suggestions for
further work are given in Section 7.

2. BACKGROUND

2.1. Governing Equations

The required solution must satisfy the governing equations for the evolution of a wavefield
propagating on the free surface of a three-dimensional body of fluid. If the wave-induced
fluid motion is assumed irrotational, a velocity potentialφ(x, y, z, t) can be defined wheret
indicates time and(x, y, z) represent the usual Cartesian coordinates in which(x, y) defines
a horizontal plane located at the mean water level andz is measured vertically upward. The
velocity vector,u = (u, v, w), is defined byu = ∇φ, where∇ = (∂x, ∂y, ∂z). If the fluid is
assumed to be incompressible, mass continuity requires∇u = 0,which, expressed in terms
of φ yields Laplace’s equation, is

∇2φ = 0 (1)

This equation applies throughout the fluid domain,Dη, which is bounded by a horizontal
bed atz= −h and the free surface defined byz= η(x, y, t). On these boundaries the
conditions apply:

φz = 0 on z= −h (2)

and

φt + 1
2|∇φ|2+ gη = 0

ηt + ηxφx + ηy φy − φz = 0

}
on z= η(x, y, t), (3a & 3b)

where g is the gravitational acceleration and the subscript denotes differentiation with
respect to the variable. The first of these equations (2) denotes the fact that the horizontal
bed is assumed impermeable, while the latter (3a) and (3b) define the dynamic and kinematic
free surface boundary conditions. These conditions respectively require the pressure at the
water surface to be constant and the fluid particles on the surface to remain there.

Equations (3a) and (3b) provide the basis of all time-marching solutions. Simple rear-
rangement definesφt andηt in terms ofη and the spatial derivatives ofη andφ evaluated
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at the water surface. If at some initial time,t = t0, a spatial representation ofη andφ is
given, and it is assumed that their gradients in thex, y, andz directions can be evaluated,ηt

andφt can be defined and the solution successfully time marched tot = t0+1t . With an
appropriate concern for accuracy, repeated application allows the evolution of the wavefield
over large times.

2.2. Application of the Dirichlet–Neumann Operator

In unidirectional waves, the early Fourier-based spectral method of Fenton and Rienecker
[10] described the surface elevation

η(x) =
N/2∑
n=0

aneiknx (4)

and the corresponding velocity potential

φ(x, z) =
N/2∑
n=0

An cosh(kn(z+ h))eiknx, (5)

wherean andAn are functions of time only,kn = nk0 is an integer multiple of the fundamen-
tal wavenumberk0 = 2π/λ0 (whereλ0 is the fundamental wave length),N/2 represents
the number of terms in the Fourier series, andN is number of surface calculation points.
In this form, the water surface elevation (4) can be represented by a Fourier series, while
the explicit inclusion ofz in the velocity potential (5) avoids the difficulty of defining the
spatial gradientφz at the water surface (Eqs. (3a) and (3b)). Unfortunately, the downside
of this approach is that while the surface elevation can be time stepped using a fast Fourier
transform (FFT), the derivatives(An)t needed to advanceφ require the solution of a ma-
trix of N simultaneous equations. This latter activity is responsible for the scheme’s poor
computational efficiency and severe limitations when extended to three dimensions.

Using a theorem proposed by Coifman and Meyer [14], Craig and Sulem [13] introduced a
Dirichlet–Neumann operator, referred to as their G-operator, to convert values of the velocity
potential on the water surface,φ(x, (η(x, t), t) = 8(x, t), into its spatial derivatives. In a
formal sense, the Dirichlet–Neumann operator concerns the normal derivative∂nφ, where
n is an outward facing normal. However, Craig and Sulem [13] defined their G-operator
such that

G(η)8 = (φz− ηxφx)z=η. (6)

In this way, the kinematic free surface boundary condition (3b) appropriate to unidirectional
waves (ηy = φy = 0) becomes

ηt = G(η)8. (7a)

Noting that the temporal derivative of the surface velocity potential is defined by8t =
(φt + φzηt )z=η, where the second term in the brackets reflects the vertical motion of the
surface profile, the dynamic free-surface boundary condition (Eq. (3a)) is rearranged to
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give

8t = − 1

2(1+ (ηx)2)
((8x)

2− (ηt )
2− 2ηx8xηt )− gη. (7b)

Using Eqs. (7a) and (7b) the surface parametersη and8 can be time stepped in the usual
way. The advantage of this approach is that for unidirectional waves, only equations in-
volving terms on the one-dimensional free surface need to be solved, with bothη and8
represented by a Fourier series. It is this approach that the present paper seeks to extend to
multidirectional wavefields.

More recently, Craiget al. [15] and Nicholls [16] have provided descriptions of the
Dirichlet–Neumann operator for three-dimensional domains. In the latter case, Nicholls [16]
applied numerical continuation methods to both two- and three-dimensional wave problems.
However, the computational efficiency of this scheme is such that parallel computating
power is required to resolve a small number of wave components. In contrast, the present
paper adopts an alternative formulation, based on the scheme originally outlined by Craig
and Sulem [13], and seeks to model a large number of interacting wave components typical
of those occurring in a real sea state.

2.3. Solution Procedure

Before providing a full derivation of the new three-dimensional G-operator, it is of
value to give a brief overview of the solution procedure. If the dependant variablesφ and
η are to be represented by Fourier series in the horizontal plane, one possible solution
assumes that the wave motion is periodic in both thex andy directions. Ifλx andλy define
the fundamental wavelengths in thex and y directions,η(x + λx, y+ λy) = η(x, y) and
φ(x + λx, y+ λy, z) = φ(x, y, z), defining a fundamental domain that is rectangular in
character. At this point, it is perhaps of interest to note that there are other periodic domains
for functions of two variables that are not necessarily rectangular. These nonrectangular
domains are not considered in the present paper, but may be important when considering
some doubly periodic motions such as the five-wave reasonant interactions that occur in
deep water.

In the present rectangular domain, one class of solution that satisfies the periodic con-
straint noted above is given by

φ =
∞∑

k=−∞

∞∑
l=−∞

akl(z)e
i (kx+ly). (8)

In a Fourier system,k andl are integer multiples of the fundamental wavenumber compo-
nents in thex andy directions, respectively, so thatk = k0n andl = l0m, wherek0 = 2π/λx,
l0 = 2π/λy, andn andm are integers. The unknown local constantsakl(z)may be defined
in terms of global parameters by substituting Eq. (8) into (1) and solving the resulting partial
differential equation subject to the boundary conditions given in Eq. (2). This yields

φ =
∞∑

k=−∞

∞∑
l=−∞

αkl cosh(K (z+ h))ei (kx+ly), (9a)

whereK = √k2+ l 2 and the parametersαkl are global constants. Evaluatingφ at the water
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surface,z= η, gives

8 =
∞∑

k=−∞

∞∑
l=−∞

αkl cosh(K (η + h))ei (kx+ly). (9b)

The solution procedure now requires a new three-dimensional G-operator that transforms
8 into φz evaluated atz= η:

(φz)z=η = G(η)8. (10)

Using Eq. (9a),

(φz)z=η =
∞∑

k=−∞

∞∑
l=−∞

αkl K sinh(K (η + h))ei (kx+ly). (11)

Comparing Eqs. (9b), (10), and (11) the transformation implied by the G-operator simply
involves the “multiplication” byK tanh(K (η + h)) for all values ofk, l , x, and y. Un-
fortunately, multiplications inx, y space and Fourier multiplications ink, l space do not
commute, a fact that is closely related to the Heisenburg uncertainty principle [17]. This
is a particular problem in the evaluation of tanh(K (η + h)), which contains information in
both the wavenumber domain and the physical domain.

To overcome this difficulty, the cosh and sinh terms in Eqs. (9b) and (11) are expanded
using a Taylor series expansion aboutη = 0. In these expansions, “multiplications” appro-
priate to the two domains can be resolved, with Fourier transforms (FTs) used to convert
between the wavenumber and physical domains. Substituting these expansions into Eq. (10)
allows the G-operator to be evaluated at various orders. In this way, a solution appropriate
for all k, l , x, andy is achieved.

Having evaluated the new 3-D G-operator (10), the partial derivatives ofφ evaluated at
z= η may be defined in a similar manner to that outlined in Section 2.2 giving:

(φx)z=η = 8x − ηxG(η)8 (12a)

(φy)z=η = 8y − ηyG(η)8 (12b)

(φt )z=η = 8t − ηt G(η)8. (12c)

Applying these results the two nonlinear boundary conditions can be rewritten as

ηt = G(η)8− (ηxφx − ηy φy)z=η (13a)

8t = ηt G(η)8− 1

2
(G(η)8)2− 1

2
[(φx)

2+ (φy)
2]z=η − gη (13b)

It is these equations that will be time marched to define the evolution of a fully nonlinear
and directionally spread wavefield.

3. THE NEW 3-D G-OPERATOR

3.1. Mathematical Derivation

Coifman and Meyer [14] illustrated that an operator of the form ofG(η) remains analytic
provided the Lipschitz norm (the maximum slope) ofη remains bounded byR, where
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R is the radius of convergence. As the spectral (wavenumber) bandwidth of the problem
increases R reduces, butG(η) remains analytic provided the water surface (η) is neither
locally very steep nor excessively far from the mean water level.

An analytic operator can be expanded in terms of a convergent Taylor expansion

G(η) =
∞∑
j=0

G j (η), (14)

in which eachG j (η) is homogeneous and of degreej in η such that

G j (βη) = β j G j (η), (15)

whereβ is a simple scaling parameter.
To obtain the homogeneous expansion of this operator, Eqs. (9b) and (11) are expanded

aboutη = 0 using a Taylor series. Within these series expansions, successive derivatives
are collected in terms of odd and even powers that conveniently segregate into cosh(kh)
and sinh(kh). For simplicity these equations and those shown hereafter (until indicated
otherwise) are for a single wavenumber component involving only one value ofl andk.
However, throughout the derivation it should be remembered that the overall solution must
incorporate many wavenumber components. Expanding Eq. (9b) and (11) yields

8 =

∑
j>0

j even

1

j !
(Kη) j cosh(K h)+

∑
j>0
j odd

1

j !
(Kη) j sinh(K h)

αkle
i (kx+ly) (16a)

(φz)z=η =

∑
j≥0

j even

K

j !
(Kη) j sinh(K h)+

∑
j>0
j odd

K

j !
(Kη) j cosh(K h)

αkle
i (kx+ly). (16b)

Substituting these expansions into Eq. (10) and dividing by cosh(K h) gives

[ ∞∑
m=0

Gm(η)

]∑
j≥0

j even

1

j !
(Kη) j +

∑
j>0
j odd

1

j !
(Kη) j tanh(K h)

αkle
i (kx+ly)

=

∑
j≥0

j even

K

j !
(Kη) j tanh(K h)+

∑
j>0
j odd

K

j !
(Kη) j

αkle
i (kx+ly). (17)

To simplify this equation the summations on the left-hand side are reordered using the
series law

∞∑
m=0

am

∞∑
j=0

bj =
∞∑
j=0

(
j∑

m=0

ambj−m

)
(18)
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to produce a summation of homogeneous powers from which even and odd terms of the
same degree can be identified. Therefore, recursive formulas for allG j (η)αklei (kx+ly) are
obtained as follows.

For j ≥ 0 and even

G j (η)αkle
i (kx+ly) = 1

j !
(ηK ) j K tanh(K h)αkle

i (kx+ly)

−
∑
m< j
meven

Gm(η)
1

( j −m)!
(ηK ) j−mαkle

i (kx+ly)

−
∑
m< j
modd

Gm(η)
1

( j −m)!
(ηK ) j−m tanh(K h)αkle

i (kx+ly) (19a)

For j ≥ 1 and odd

G j (η)αkle
i (kx+ly) = 1

j !
(ηK ) j Kαkle

i (kx+ly)

−
∑
m< j
modd

Gm(η)
1

( j −m)!
(ηK ) j−mαkle

i (kx+ly)

−
∑
m< j
meven

Gm(η)
1

( j −m)!
(ηK ) j−m tanh(K h)αkle

i (kx+ly). (19b)

Equations (19a) and (19b) describe the solution for a single Fourier component. Using
Fourier analysis, it may be shown that a solution appropriate to multiple components can
be obtained by integrating over all wavenumber components,

f (D)8(x, y) = 1

4π2

∫ ∫
f (K )αkle

i (kx+ly) dk dl, (20)

with

D = −i ∂r and αkl =
∫ ∫

8(x, y)e−i (kx+ly) dx dy,

whereD is a complex radial derivative operator in physical space,r =
√

x2+ y2, andakl

are the global constants found from a Fourier transform of8.
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When f (K ) = 1, Eq. (20) is simply the inverse Fourier transform, recreating the surface
values ofφ from the global constantsαkl . When Eq. (20) is applied to more complex
functions, the results are of greater significance. For example, iff (K ) = K , then Eq. (20)
gives

1

4π2

∫ ∫
Kαkle

i (kx−ly) dk dl = D8, (21a)

while if f (K ) = tanh(K )

1

4π2

∫ ∫
tanh(K )αkle

i (kx−ly) dk dl = tanh(D)8. (21b)

Applying this solution to all parts of Eqs. (19a) and (19b) transforms eachf (K )αklei (kx−ly)

term into f (D)8. Accordingly, the first term of the G-operator (j = 0 in Eq. (19a)) is given
by G0ei (kx+ly) = k tanh(kh) αklei (kx+ly), which becomes

G0 = D tanh(Dh). (22a)

Similarly, the second and third terms are given by

G1(η) = ηD2− D tanh(Dh)ηD tanh(Dh) (22b)

G2(η) = 1

2
η2D2D tanh(Dh)− ηD2ηD tanh(Dh)− 1

2
D tanh(Dh)η2D2

+ D tanh(Dh)ηD tanh(Dh)ηD tanh(Dh). (22c)

Although the calculation of these expressions is relatively easy, the number of FTs re-
quired for their evaluation increases rapidly with each additional order of the operator. Each
time the D-operator (Eq. (20)) is encountered, two FTs are required. The first converts
physical values to the wavenumber domain, where differentiation takes place, while the
second transforms the values back into the physical domain. Accordingly, ifM defines
the order of truncation of Eq. (14), a total of(2M+2− 2) FTs are made with this recursive
form.

To reduce the computational effort, Vijfvinkel [18] pioneered a method based on the
elimination of repeated calculations and so speeded up the calculation of the original (2-D)
G-operator [13]. Within the new 3-D G-operator, a separate study of the terms arising at
each order has revealed a similar pattern of duplication. For example, the zero- and first-
order terms both calculateD tanh(Dh). Therefore, the first-order term can be evaluated
more efficiently using the result fromG0, such thatG1(η) = ηD2− D tanh(Dh)ηG0. This
simple procedure reduces the FTs by two. Other more complex patterns also exist, speeding
up the evaluation at each additional order. The “improved” method for evaluating Eqs. (22a)–
(22c), together with the higher orders, may be summarized accordingly as

Gm(η)8 =
∑
n≤m
nodd

ηn Dn+1[µm−n]

n!
+
∑
n≤m
neven

ηn Dn+1 tanh(Dh)[µm−n]

n!
, (23)
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TABLE I

Number of FFTs Required to Evalutate the New G-operator

M 0 1 2 3 4 5 6 7 8 9

Original 2 6 14 30 62 126 254 510 1022 2046
Quick form 2 5 9 14 20 27 35 44 54 65

where

µ0 = 8
µ j>0 = −

∑
1≤n≤ j
neven

ηn Dn[µ j−n]

n!
−
∑

1≤n≤ j
nodd

ηn Dn tanh(Dh)[µ j−n]

n!

Within this improved solution, the number of FTs is reduced to1
2(M + 1)(M + 4). Since

the overall computational effort is largely dependent upon the number of FTs calculated,
the improvement associated with this latter scheme is significant, as indicated in Table I.
For example, the numerical results presented in Section 6 were mostly undertaken with a
truncation order ofM = 7. In this case, the improved form of the equations is over an order
of magnitude faster than the original, with no corresponding loss of accuracy.

3.2. Truncation Order

The optimal value for the truncation orderM in Eq. (14) depends upon both the non-
linearity of the wave problem and the number of points (or Fourier components) used to
define the water surface. To examine the characteristics of the operator, an analytical fifth-
order unidirectional Stokes’ solution [19] was used to calculateη and8, together with the
corresponding vertical velocities arising at the water surface, for a unidirectional regular
wave of periodT = 2.2 s propagating in a water depth ofh = 1.2 m. An equivalent set of
vertical velocities arising at the water surface may also be calculated via the G-operator (in
its 2-D form appropriate to unidirectional waves) based on the predicted values ofη and8.
Comparison between these velocities and the Stokes’ results, where the latter are exact to
fifth-order and consistent withη and8, highlights errors within the G-operator.

Figure 1 concerns the percentage errors in the surface velocities for a wide variety of test
conditions. In both parts of this figure the dotted vertical line defines the truncation order
(M = 7) adopted in the subsequent sections. These results demonstrate three important
points in relation to the accuracy of the operator:

(a) WhenM is small, high-order corrections are negligible. In contrast, whenM is large,
numerical errors can quickly overwhelm any anticipated improvement from the highest-
order contributions. This effect is apparent in both part (a) and (b) of Fig. 1, where there is
a reduction in the errors up to some optimal truncation order. Beyond this point, the errors
rapidly increase.

(b) Fig. 1a shows that as the number of surface points,N, increases up to 512, the op-
timal value ofM also increases, resulting in smaller errors. An increase inN improves
the description of the surface profile, which in turn allowsηx and8x to be calculated
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FIG. 1. Changes to the errors made within the G-operator. (a) As the number of surface points (N) is
varied.ka= 0.20, kh= 1.2. (b) As the fundamental wave amplitude (A) is varied.N = 1024, k = 0.96 radm−1,
h = 1.2 m.

more accurately. However, forN > 512, the numerical errors become significant, reducing
the optimal value ofM . This is due to the wave energy being more finely spread across
many wavenumber components, with each value becoming closer to the limits of the com-
puters numerical accuracy (15 significant figures). This represents a significant restriction
with all Fourier type models as it limits the range of wavelengths that can be modeled
simultaneously.

(c) As the water surface becomes more nonlinear, the rate of improvement due to each
additional order of the G-operator decreases, although the optimal truncation order in-
creases (Fig. 1b). This reflects a balance between gaining accuracy from the evaluation of
higher order terms and losing accuracy to numerical errors. Reducing the truncation order
when modeling linear or near-linear waves is therefore beneficial, while an increase in the
truncation order is appropriate as the waves become more nonlinear.
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4. NUMERICAL FORMULATION

4.1. Implementation

The calculation of the G-operator and the remaining terms in Eqs. (13a) and (13b) re-
quires the horizontal derivatives of8 andη. The partial derivatives of each variable in the
horizontal direction are achieved using FTs: a transformation into spectral space, followed
by a multiplication byikn (for the calculation of∂x) and finally an inverse FT. These FTs
are performed using a fast Fourier transform (FFT) technique, the characteristics of which
are such that the number of calculations varies according toN log(N), provided the number
of surface points is an integer power of 2. Although there are numerous implementations of
such schemes, each boasting superior performance in a variety of tasks, the current scheme
is based upon the implementation developed by Frigo and Johnson [20] and known as the
“fastest Fourier transform in the West” or FFTW. Using FFTW a large numerical run with
N = 256× 256 surface points spends 60% of the computational time performing FFTs.
In such a run, 20 wave periods involving a near-breaking wave event takes approximately
4 hours on a Pentium III 800 MHz computer.

4.2. Time Marching

Having identified the G-operator and the total horizontal derivatives ofη and8 at some
initial time t = t0, Eqs. (13a) and (13b) may be time marched to yield a description of
the wavefield at some new time,t = t0+1t , where1t defines the time step. Within the
present 3-D model, the time marching is achieved using a scheme similar to the fourth-
order Adams–Bashford/Moulton predictor–corrector method outlined in Presset al. [21].
The only difference is that a fifth-order solution to Moulton’s corrector is used, rather than
the original fourth-order solution. Accordingly, the predictor is defined as

yn+1 = yn + 1t

24
(55ẏn − 59ẏn−1+ 37ẏn−2− 9ẏn−3)+ O(1t5) (24a)

and the corrector as

yn+1= yn+ 1t

720
(251ẏn+1+ 646ẏn− 264ẏn−1+ 106ẏn−2− 19ẏn−3)+ O(1t5), (24b)

where the overdot denotes a derivative with respect to time. The adjustment to the corrector
involves the inclusion of the terṁyn−3. Since this is already required in the predictor, the
additional effort of including it is insignificant compared to the improvement in accuracy.
To commence this scheme, the information required at the first three time steps is provided
by a fourth-order Runge–Kutta method.

4.3. Filtering

In any time-marching scheme, the main source of numerical errors arises at those locations
on the water surface where the rates of change ofη are largest. This is primarily due to the
difficulty of maintaining a sufficient degree of numerical accuracy when combining numbers
of opposing size (i.e., 1× 103+ 1× 10−6). In addition, aliasing can also contribute to
growth of high wavenumber errors, particularly when the energy is constrained within a
small wavenumber range. After a large number of time steps, these difficulties can lead to
spurious high-wavenumber oscillations in the water surface. Similar effects were observed
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in the unidirectional models proposed by Dommermuth and Yue [22], Craig and Sulem [13],
and Johannessen [24]. To overcome this difficulty, [22] proposed a five-point smoothing
function to restrict the growth of unrealistically high wavenumbers, while [24] applied a
simple cutoff filter.

The five-point filtering method was adapted for the present 3-D model by filtering radially
away from the fundamental wavenumbers (k0, l0). The resulting filter function,3(K̂ , 9),
is described by

3(K̂ , 9) =


1, K̂ < 9
1
8[5+ 4 cos(π K̂ )− cos(2π K̂ ), 9 ≤ K̂ ≤ 1,

0, K̂ > 1
(25)

with the ratioK̂ =
√(

k

kmax

)2

+
(

l

lmax

)2

,

wherekmaxandlmaxare the largest wavenumber values in each respective direction (x andy)
and9 is a constant between 0 and 1 defining the level of filtering,9 = 0 representing
the strongest filtering. Within the present study,9 = 0.9 was typically applied, although
the exact value depends upon the spectral bandwidth of the problem under consideration.
Indeed, the stability of the new numerical model was found to be such that in many cases no
filtering at all was required. In the small number of cases where it was found to be necessary,
it merely involved the suppression of very low energy levels located in the high-frequency
tail of the spectrum. By using this approach we ensured that any difficulties associated with
numerical accuracy and/or aliasing were rapidly overcome.

4.4. Accuracy

To monitor the accuracy of the numerical scheme, the total wave energy within the
computational domain,Etotal, was calculated at each time step using the solution proposed
by Benjamin and Olver [23],

Etotal = 1

2

∫
S

(8ηt + gη2), (26)

where the integration is performed over the entire water surface. Although Eq. (26) is exact,
it only involves amplitude squared terms and is therefore only weakly weighted to those
areas where the wave motion is most vigorous. Accordingly, very gradual shifts of energy
throughout the domain may dwarf relatively large but strongly localized errors in the vicinity
of an extreme or focused wave event. This difficulty becomes more significant as the size
of the numerical domain increases relative to the wavelength corresponding to the peak of
the spectrum.

In an attempt to overcome this concern, the reversibility of the solution was also con-
sidered. This involved undertaking a complete numerical run using the final results as the
input to a second run in which the waves propagate backward. The ability of the scheme
to reproduce the initial starting condition provides strong evidence that the errors asso-
ciated with both the time-marching procedure (Eqs. (24a) and (24b)) and the numerical
rounding are very small. Calculations of this type do not, however, provide guidance
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FIG. 2. Errors in the total energy for a laboratory-scale broadbanded sea state. (a) A comparison between
forward and backward simulations for a near-breaking wave:A = 55 mm,N = 512,λ0 = 30 m. (b) A comparison
between runs with increasing nonlinearity:N = 512, λ0 = 30 m.

as to the accuracy of either the G-operator or the FTs. These must be examined using
Eq. (26).

Figures 2a and 2b provide a typical sequence of results, highlighting the accuracy of the
proposed scheme. Figure 2a concerns a laboratory-scale sea state that evolves or focuses
to produce a highly nonlinear, near-breaking, wave event att = 0. Two error traces are
presented. The first represents an initial run that commences att = −20 s and continues
through focus untilt = +10 s. The second represents a reverse simulation in which the
conditions att = +10 s are run backward untilt = −20 s. Comparing these results, the
predicted water surface elevations are effectively identical, with a difference of only 2×
10−6 m in the maximum crest elevation. Furthermore, the errors in total energy, Eq. (26),
are also similar in the vicinity of the focused event with maximum errors in the forward run
of 0.0058% compared to 0.0061% in the reverse run. Figure 2b again concerns a laboratory-
scale sea state and contrasts the growth in the maximum error for five increasingly nonlinear
wave groups, whereA represents the linear sum of the component wave amplitudes and
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A = 0.05 m again represents a highly nonlinear wave event. In each case, the errors in the
total energy remain very small when the evolution of the wavefield is essentially linear.
As the nonlinearity increases, both locally within a given sea state and with increasingA,
the maximum errors inevitably increase. However, even in the most nonlinear cases, the
maximum error in the total energy is always less than 0.01%.

5. MODEL IMPLEMENTATION AND PRELIMINARY RESULTS

5.1. Initial Conditions

To commence simulations using the proposed model,η and8must be defined at each of
the calculation points across the entire water surface. This task is complicated by two facts.
First, the evolution of a wavefield is traditionally observed in time at a fixed spatial location,
with the corresponding wave spectrum represented by a distribution in the frequency domain.
Second, with the proposed method based on Fourier analysis, the required description in
the spatial domain must be periodic (Eq. (8)).

To explain how these difficulties are overcome, we will first consider a unidirectional
wavefield. In the first stage of the analysis, the frequency spectrum must be represented by
a set of discrete amplitude components in the wavenumber domain, where the number of
components should be an integer power of 2 to maximize the efficiency of the FFTs. Details
of the procedure to define these wavenumber components vary depending on whether the
model is applied to laboratory data, for which the input is defined by a time-series sent to the
wave paddle, or full-scale field data in whichSηη defines a continuous distribution of energy
in the frequency domain. Nevertheless, both procedures are based on the assumption that
the information in the frequency (or time) domain defines the underlying linear or freely
propagating waves.

With a set of discrete wavenumber components identified, the corresponding values of
η and8 may be based on a simple analytical theory, either linear or second order. Since
the present paper is primarily concerned with the description of highly nonlinear transient
waves, arising due to the focusing of wave components, a linear or second-order solution
provides an appropriate description of the initial conditions provided they are specified
well in advance of the focal time. At this point, the wave energy is widely dispersed across
the computational domain, and the local nonlinear interactions are thereby reduced to a
minimum. In an earlier study, Johannessen [24] showed that provided the second-order
correction [4] to the maximum initial water surface elevation is no greater than 2%, a linearly
predictedη and8 are sufficient. In the present, study, an alternative and more rigorous
condition is applied. Repeated tests suggest that provided the second-order corrections are
no greater than 3%, the second-order solution can be used to generate improved initial
conditions.

To define the initial conditions appropriate to a directionally spread wavefield, a similar
process to that defined above is applied. However, in generating a unidirectional wavefield
propagating at, say, 20◦ to thex-axis, as shown on Fig. 3, it is clear that in a 2-D wavenumber
spectrum involving two horizontal directions(k, l ), there is no sequential line of components
that travel at exactly this angle. Indeed, this condition only exists for waves propagating at
0◦, 45◦, and 90◦. To overcome this difficulty, the appropriate wave energy must be located in
wavenumber components which are positioned immediately alongside the desired direction.
In Fig. 3 the intersections between the 20◦ line and the underlying 2-D wavenumber grid
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FIG. 3. Diagram of a discrete 3-D spectral grid. The thick line indicates the ideal location for all energy, in
order to define a wave travelling at 20◦ to thex-axis. The solid grid lines represent the edges of discrete cells,
the centers of which are defined by the intersection of the dashed lines. These centers represent the position, in
wavenumber space, at which the model can ascribe discrete energy.

are noted by the open symbols. The distance between successive symbols indicates the
contribution of wave amplitude (or wave energy) from the unidirectional spectrum to be
placed within the corresponding grid.

For example, if the distance from the origin in wavenumber space is defined byK =√
k2+ l 2, the contribution to the wave motion that should be located in the grid spanned

by two successive pointsKa andKb is given by

alk(Ka, Kb) =
∫ Kb

Ka

â(K , θ)dK, (27)

where the unidirectional amplitude spectrumâ(K , θ), orientated at some angleθ to the
x-axis, is taken to be continuous. In practice, it is usual to assume thatâ(K , θ) = α(θ) â(K ),
whereα(θ) is the proportion of the total amplitude that propagates at any given angle. There
are two commonly applied formulae used to describe the directional distribution. The first,
due to Mitsuyasu [25], describes the energy distribution as proportional to cos2s(θ/2), giving
an amplitude distribution of

α(θ) = ζ coss
(
θ

2

)
. (28a)

Alternatively, the second applies a wrapped normal distribution

α(θ) = ζ

σθ
exp

(
− θ2

2σ 2
θ

)
, (28b)

where the angleθ is measured from the mean wave direction (which in the present cases
is aligned with thex-axis),ζ is a normalizing coefficient,s is the Mitsuyasu’s spreading
parameter, andσθ is the standard deviation of the normal distribution.

To describe a directionally spread wavefield, the above process is merely repeated for a
large number of individual directions, and the distributed amplitudes are linearly summed.



294 BATEMAN, SWAN, AND TAYLOR

It is, however, important to note that the angular resolution improves with distance from the
origin. Accordingly, when modeling a directionally spread sea, the wavenumber domain
(nk0,ml0) should be chosen so that the dominant wave energy component, corresponding
to the spectral peak, is positioned as far as is possible from the origin(n = m= 0). Having
again identified a discrete set of wavenumber components, the corresponding values of
η and8 can be calculated using linear or second-order theory, where the latter should
be based on Longuet-Higgins [26] for infinite depth or Sharma and Dean [5] for finite
depths.

5.2. Model Parameters

Having defined the initial conditions, the model parametersNx, Ny, k0, l0, and1t need
to be chosen so that the desired wavefield can be accurately represented, while remaining
within the practical bounds of current computing capabilities.Nx and Ny define the size
of the numerical domain in each of the principal coordinate directions. These values must
be sufficiently large to capture specific features of the water surface profile, particularly its
steepness, but should not be excessively large since this encourages the growth of high-
frequency numerical errors. Typical calculations have been based upon domains of size
N = 256× 256, although some cases of 512× 512 have also been undertaken.

The fundamental wavenumbersk0 andl0 must be sufficiently small to ensure that there
are enough wavenumber components in the most energetic parts of the spectrum. In the
present study, this was achieved by setting the (weighted) mean position of a spectrum, in
each of the principal coordinate directions, to be approximately 1/10th of the size of the
domain:

∑∞
l=0

∑∞
k=0 a2

klk∑∞
l=0

∑∞
k=0 a2

kl

≈ 1

20
k0Nx and

∑∞
l=0

∑∞
k=0 a2

kl l∑∞
l=0

∑∞
k=0 a2

kl

≈ 1

20
l0Ny. (29)

Finally, the time step1t used in Eqs. (24a) and (24b), was typically chosen so that
1t ≤ Tp/200, whereTp is the time period corresponding to the peak spectral frequency.
This choice was simply based upon the experience gained from running a large number of
trial simulations, with varying time steps, in which the accuracy and stability of the solution
was examined.

5.3. Preliminary Results

To gauge the success of the proposed model, a number of preliminary tests were un-
dertaken. The first concerns a series of unidirectional regular waves in deep water with a
wave period ofT = 1.4 s and a wave steepness ofHk/2= 0.3. This represents approx-
imately 70% of the conventional breaking limit,Hk/2= 0.44, for unidirectional regular
waves. The initial conditions used to generate these waves were based upon an analytical
fifth-order Stokes expansion [19]. Calculations were undertaken in the fully 3-D compu-
tational domain of infinite depth, with unidirectional waves propagating at 0◦, 20◦, and
45◦ to thex-axis. Comparisons between these results and the analytical solution forη(t)
are provided on Fig. 4a. These results confirm that the proposed solution is capable of
accurately simulating nonlinear waves propagating at any angle across the computational
domain.
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FIG. 4. Preliminary test results. (a) Comparison between the simulation of steady Stokes waves (ak= 0.3) at
different angles across a numerical domain.N = 128× 128. (b) A comparison of the maximum surface elevation
for two unidirectional waves travelling at 0◦ and 20◦ across an uneven spectral mesh, i.e.,λx = 30 m,λy = 50 m,
N = 256× 256. (c) The numerical errors arising during the simulation of unidirectional waves travelling at 0◦

and 20◦. The 0◦ run corresponds to a 2-D simulation withλ = 28.2 m, which is equivalent to the fundamental
wavelengths ofλx = λy = 30 m for the 20◦ case that was simulated with the 3-D model.N = 256× 256.
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Figures 4b and 4c concern a second series of tests in which a laboratory-scale sea state,
involving a unidirectional broadbanded frequency spectrum, was focused to produce a
highly nonlinear, near-breaking, wave event att = 0. Figure 4b contrasts the time-variation
in the maximum water surface elevation anywhere within the computational domain. Two
cases are considered: the first propagating at 0◦ and the second at 20◦. To further complicate
these comparisons, the underlying spectral mesh is asymmetric withλx = 30 m andλy =
50 m. Nevertheless, the computed results are again in very good agreement, confirming
that the evolution of highly nonlinear transient waves can be successfully modeled and
the results shown to be independent of the direction of propagation. Figure 4c concerns the
same wave cases and describes the maximum percentage error in the total energy (Eq. (26)).
These results appear to suggest that a directional simulation may be more accurate than the
equivalent unidirectional case. This probably arises due to three competing effects. First,
there is a loss of accuracy due to a reduction of the fundamental wavelength in the principal
wave direction (forλx = λy = 30 m, the effective fundamental wavelength at 20◦ is 28.1 m).
Second, there is a net gain in the mathematical precision achieved by spreading the surface
across an additional dimension. This effect is associated with a reduction in the magnitude
of the principal horizontal derivatives (corresponding to thex andy directions), which can
therefore be more accurately manipulated. Thirdly, there is also a loss of numerical accuracy
from further rounding errors associated with the additional dimension. Figure 4c highlights
the importance of these competing effects and suggests that the maximum error in the
total energy for a wave propagating at 20◦ is less than half the value for an identical wave
propagating along thex-axis (0◦). This suggests directionally spread wavefields are slightly
easier to model than unidirectional waves, albeit requiring considerably more computer
resources. Further details concerning all aspects of the numerical model, its implementation,
and additional preliminary tests are given by Bateman [27].

6. DISCUSSION OF RESULTS

6.1. Comparison with Laboratory Data

Recent laboratory data provided by [3] allows further rigorous assessment of the proposed
model. This experimental study provides the first detailed measurements of a large number
of focused wave groups spread in both frequency and direction. In particular, it includes
several cases that were observed to be on the limit of wave breaking. Two underlying
frequency spectra were considered: Case B, classified as broadbanded(0.6≤ T ≤ 1.4 s);
and Case D, classified as narrow-banded(0.8≤ T ≤ 1.2 s). In each of these cases, the
sea state comprises a large number of wave components, equally spaced within the given
period range and of equal amplitude, simultaneously generated at the wave paddles. The
direction of propagation and the relative phasing of the wave components were adjusted
so that wave focusing produces a large isolated wave crest at one point in space and time.
Six directional distributions were considered corresponding tos= ∞ (or unidirectional),
s= 150,s= 45,s= 25,s= 10, ands= 4 in Eq. (28a).

For each combination of wave spectrumSηη(ω) and directional spreads, a range of
input amplitudes (A) were considered, whereA defines the linear sum of the component
wave amplitudesA =∑N

n=1 an, wherean is the amplitude of thenth wave component.
Given the nature of the focusing event,A also corresponds to the linearly predicted crest
elevation at the focal position. To distinguish between the various test cases, the notation
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FIG. 5. Temporal records of the water surface elevation,η(t), at the focal position (x = 0) for unidirectional
and directionally spread waves. (a), (b), and (c) correspond to broadbanded frequency spectra, Case B, and (d),
(e), and (f) the narrow-banded frequency spectra, Case D.

adopted by Johannessen and Swan [3] will be applied herein. Accordingly, specific test
cases are referred to by their input frequency spectrum, their linear amplitude sum, and their
directional spread. For example, Case B66s45 corresponds to the broadbanded frequency
spectrum (Case B) with an input amplitude ofA = 66 mm and a directional spread of
s= 45.

Figures 5a–5f concern the time-history of the water surface elevationη(t) recorded at
(or very close to) the focal position for six highly nonlinear wave events. In each case, the
input amplitude is within 4% of the limiting value at which wave breaking is first observed.
The six cases concern both broadbanded and narrow-banded frequency spectra and involve
a range of directional spreads froms= ∞ (or unidirectional waves denoted by “ud”),
directionally spread but relatively long-crested waves corresponding tos= 45, and very
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short-crested waves with a large directional spread corresponding tos= 4. In each case,
the numerical model is shown to be in good agreement with the laboratory data. This is
particularly true prior to, and in the immediate vicinity of, the focal event (t = 0). However,
at larger times after focusingt > 1.0 s, there are small differences between the observed
and numerically predicted results. These are perhaps more evident in the narrow-banded
spectra (Figs. 5d–5f). This is consistent with the effects of wave reflection from the down-
stream boundary of the wave basin, a full discussion of which is given by Johannessen and
Swan [3].

Indeed, it is important to note that while the experimental procedure adopted by [3]
was specifically arranged to minimize the effects of reflection on the extreme wave event,
wave reflections present a significant problem in any 3-D wave basin. Nevertheless, the
description provided by the numerical model is very good and significantly better than
either the linear or the second-order solutions also presented on Figs. 5a–5f. Indeed, it is
interesting to note that while the second-order solution provides an improved fit (relative
to linear theory) of the extreme wave crest, particularly as the directionality increases, it
provides a poor description of the adjacent wave troughs. This arises because the second-
order model cannot incorporate the local energy shifts highlighted by [3] and shown to be
very significant in the description of highly nonlinear wave events. The present numerical
scheme has no such limitations.

Figures 6a and 6b concern an alternative spatial representation of the water surface
elevation,η(x), at the instant of wave focusing. Two examples are provided corresponding
to B55ud and D93s4. The latter case has both the largest input amplitude sum and the largest
directional spread and is in some respects the most difficult case to model. However, in both
this case and the unidirectional case, the numerical model is again in very good agreement
with the laborator data.

Given the inherent difficulty of obtaining laboratory data in the spatial domain,η(x),
Figs. 7a–7d and 8a–8d concern Cases B66s45 and D78s45, respectively, and provide
time-histories of the water surface elevation at four spatial locations on either side of
the focal position (x = 0). These results confirm that the numerical model is not only
able to model the characteristics of an extreme wave event, but also able to model the
evolution of a highly nonlinear and directionally spread wavefield in both space and
time.

FIG. 6. Spatial records of the water surface elevation,η(x), at the focal time (t = 0). (a) Case B55ud.
(b) Case D93s4.
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FIG. 7. Temporal profiles ofη(t) at spatial positions either side of the nonlinear focal event. Case B66s45.
(a) x = −1.1 m, (b)x = −0.7 m, (c)x = −0.4 m, and (d)x = 0.4 m.

6.2. Simulations of Extreme Ocean Waves

The results presented in Sections 5.3 and 6.1 suggest that the proposed model is both ac-
curate and stable. More significantly, its computational efficiency is such that it provides the
first realistic opportunity to model, in a fully nonlinear sense, the characteristics of extreme
ocean waves involving a spread of energy in both frequency and direction. Field measure-
ments confirm that the empirical JONSWAP spectrum is appropriate to the description of

FIG. 8. Temporal profiles ofη(t) at spatial positions either side of the nonlinear focal event. Case D78s45.
(a) x = −1.3 m, (b)x = −0.9 m, (c)x = −0.6 m, (d)x = 0.1 m.
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FIG. 9. JONSWAP spectra forωp = 0.551 rad/s with variations to the peak enhancement factor,γ . (Note:
whenγ = 1, a JONSWAP spectrum corresponds to a Pierson-Moskowitz or PM spectrum).

real ocean spectra in fetch-limited seas,

Sηη(ω)= αg2

ω5
exp

(
−β ω

4
p

ω4

)
γ

exp
[
− (ω−ωp)2

2ω2
pσ

2

]
σ = 0.07, ω ≤ ωp σ = 0.09, ω > ωp, (30)

where typicallyα = 0.0081,β = 1.25, ωp is the peak spectral frequency, andγ is the
peak enhancement factor usually chosen to be between 2.8 and 3.0 for severe storm
conditions.

A graphical representation of this distribution is given in Fig. 9. An important factor
to note is that although the dominant wave energy is relatively narrow banded, the high-
frequency tail introduces a significant range of time scales (approximately 1:3 in terms of
ωp). Furthermore, simple linear arguments define the deep water dispersion equation as
ω2 = gk, suggesting that the range of significant length scales is at least of order 1:10. To
incorporate this range, and at the same time to allow the model sufficient opportunity to
describe the local energy shifts in the vicinity of an extreme event (involving both high and
low frequencies), the resolution in the directional wavenumber domain(k, l )must be high.
This, in turn, implies a large number of surface points within the computational domain,
and explains the overriding need for computational efficiency.

Early work by Lindgren [28], together with more recent contributions from Boccotti [29],
Phillips et al. [30], and Tromanset al. [31], has shown that the most probable or average
shape of a large wave event (providedA/ση > 2 whereση is the standard deviation of the
surface elevation,η(t)) is related to the autocovariance function of the underlying spectrum.
Although the arguments underlying this result are fundamentally linear, assuming that all
the wave components are freely propagating, it can be manipulated to yield the initial
conditions appropriate to the proposed model. The steps associated with this task are as
follows:

(a) The NewWave model [31] is applied to define the linearly predicted shape of an ex-
treme wave (specified in terms ofA = ηmax) with the desired underlying frequency spectrum
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(Sηη(ω) in Eq. (30)). In the time domain this gives the expected shape of a large wave event
as

η(t) = ηmax

∫∞
0 Sηη(ω) cos(ωt) dω∫∞

0 Sηη(ω) dω
. (31)

For this wave event the amplitude spectrum of discrete wavenumber components is obtained
from

a(k) = ηmax
Sηη(ω(k))∫∞

0 Sηη(ω) dω
1ω, (32)

wherew(k) = √gk tanh(kh) and1ω is the frequency interval corresponding to the dis-
cretization of the wavenumber spectrum.

(b) These discrete wave components are back calculated (linearly) to an initial time, well
before the extreme or focal event, at which the wave energy is widely dispersed (Section 5.1).
Such calculations must include the effects of directionality modeled using either Eqs. (28a)
or (28b).

(c) A simple linear or second-order analytical solution is used to generate the corres-
ponding initial values forη(x, y) and8(x, y) appropriate to the numerical model.

(d) Using these initial conditions the wavefield is time marched, in a fully nonlinear
sense, up to and beyond the occurrence of an extreme focused event. Due to the nonlinear
interactions, this extreme event will occur at neither the linear focal time nor the linear focal
position. Nevertheless, comparisons between the nonlinear extreme event and the original
linear predictions (Eq. (31)) highlights the importance of nonlinearity when defining an
extreme ocean wave.

The results of this process are given in Figs. 10a–10h. These calculations correspond to
a JONSWAP spectrum withωp = 0.46s−1 andγ = 1.7, a directional distribution ofs= 7
(or σθ = 30◦ in Eq. (28b)) and a linear input amplitude sum ofA = 16.3 m. This case
corresponds to a typical design wave for the northern North Sea with a return period of
10,000 years. Figures 10a–10h provide a sequence of 3-D spatial plots defining the water
surface elevation,η(x, y), at discrete times in the vicinity of an extreme or focal event
occurring att = 1.6 s. The sequence commences att = −100 s (Fig. 10a) and continues
past the focal point tot = +30 s in Fig. 10h. The initial conditions appropriate to this case
were specified using linear theory att = −100 s. The calculations incorporated 256× 256
wavenumber components withλx = λy = 4000 m. To provide a good visual description of
the evolving wavefield each part of Fig. 10 concerns a small central region of the compu-
tational domain, covering 25% of the total area.

The characteristics of the extreme wave occurring att = 1.6 s on Fig. 10d is further
investigated in Fig. 11. This provides a spatial description of the water surface elevation in
the mean wave direction,η(x), and contrasts the fully nonlinear calculations with a linear
solution based upon the summation of the freely propagating wave components implemented
within the initial conditions. As a large wave evolves, the nonlinear wave–wave interactions
cause a “downstream-shifting” of both the focal-position and the focal-time. In the present
example, the nonlinear wave focused atx = 80 m. However, this effect has been removed
from the present comparisons in order to highlight the significant nonlinear changes in the
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FIG. 10. Evolution of a short-crested, directionally spread,s= 7, steep wave group.Tp = 13.5 s, h =
∞, γ = 1.7.

profile of the extreme wave. In particular, the largest wave crest is shown to be higher and
narrower than the linear predictions due to the local nonlinear energy transfers within the
wavenumber domain.

The fundamental importance of the directionality of a sea state is demonstrated by com-
parison with the fully nonlinear, unidirectional wave record indicated by the dashed line
on Fig. 11. This record is based upon an identical (normalized) wave spectrum,Sηη(ω),
and represents the largest nonbreaking wave that can be generated in a unidirectional sea
(s= ∞). The difference between this and the fully nonlinear directionally spread wave
record is consistent with the laboratory findings of [3]. In particular, it confirms their hy-
pothesis that an increase in the directionality of a wavefield allows larger waves to evolve
prior to the onset of wave breaking.
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FIG. 11. Spatial records of the water surface elevation,η(x), at the focal time (t = 0) for the near-breaking
unidirectional (s= ∞) and directional (s= 7) waves.γ = 1.7, Tp = 13.5 s,h = ∞.

7. CONCLUDING REMARKS

This paper has considered the description of surface water waves, particularly the evo-
lution of extreme waves due to the focusing of wave components involving a significant
spread of energy in both frequency and direction. Such waves are highly nonlinear, evolving
in both space and time. To model such waves a new, fully nonlinear, spectral wave model
has been proposed. This is based upon a form of the Dirichlet–Neumann operator similar
to the G-operator employed in the unidirectional wave model proposed by Craig and Sulem
[13]. Using this approach, an initial spatial representation of the water surface,η(x, y),
and the velocity potential at this surface,φ(x, y, η) = 8(x, y) can be time marched to
define the evolution of a wavefield. Furthermore, by representing bothη and8 as Fourier
series, the necessary spatial derivatives can be calculated rapidly using fast Fourier trans-
forms. The overriding advantage of this technique lies in its computational efficiency and
hence its ability to model the large range of length scales, in two coordinate directions
(x, y), associated with realistic ocean waves. Indeed, the present model provides the only
solution capable of modeling, in a fully nonlinear sense, the evolution of extreme 3-D ocean
waves.

The proposed model has been validated using existing regular wave theories and, perhaps
more importantly, by comparison with recent laboratory data describing extreme, near-
breaking waves in a directionally spread sea [3]. This data set is significant in that it provides
the first quantitative assessment of the importance of directionality in determining the
characteristics of extreme waves. In particular, it shows that for a constant input amplitude
sum (or constant energy level) an increase in the directionality leads to reduced nonlinearity
and hence lower crest elevations. Conversely, if the energy level is increased until the onset
of wave breaking, an increase in directionality leads to larger limiting crest elevations.
The present model is able to reproduce accurately these effects at a laboratory scale. More
significantly, it has also demonstrated (for the first time) that similar effects may occur in
the open ocean involving realistic frequency spectra and directional spreads.
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The success of the present model is important in two respects. First, there are significant
limitations as to what can be investigated in a laboratory-scale wave basin. For example,
Johannessen and Swan [3] identify some significant and unexpected nonlinear wave–wave
interactions in the vicinity of an extreme event and provide some evidence that the associated
wave components are freely propagating. However, due to the inherent difficulty of obtaining
accurate, well-resolved spatial data,η(x, y), the precise nature of these wave components
could not be resolved. The present model provides an ideal vehicle to investigate this point.
Secondly, from a more practical perspective, the description of extreme ocean waves is
fundamental to the safe and economic design of both fixed and floating structures. Recent
events, involving the impact of wave crests on the underside of fixed structures, the green-
water inundation of moored structures, and the continued loss of shipping (involving both
large and small vessels) suggests that there are aspects of the ocean wave environment that
are not well modeled. Indeed, there is much on-going discussion of so-called “freak” waves,
or those which are larger or occur more often than is statistically predicted. The present
model provides an important tool with which to investigate these practically important
events and to identify if there are new physical processes associated with the occurrence of
extreme ocean waves.
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